
A framework for managing dynamic service-oriented component architectures

Walter Rudametkin1,2 , Lionel Touseau1, Didier Donsez1, Francois Exertier2

1 Laboratoire d'Informatique de Grenoble
Grenoble, France

{Name.Lastname}@imag.fr

2 Bull SAS
Echirolles, France

{Name.Lastname}@bull.net

Abstract—Software development is moving from monolithic to
modular, dynamically composable applications. Modularity
and dynamicity are the basis for software evolution since they
provide the means of adapting and updating an application.
Currently, service-oriented component models are one of the
most advanced technologies for creating dynamic applications.
These component models, which inherit concepts from both
component-based software engineering and service oriented
computing, provide a programming model that both supports
and encourages dynamic reconfigurations. Although
reconfigurations are possible, it is still difficult to manage a
dynamic application's architecture, especially in highly
dynamic environments. In this paper, we provide an overview
of the benefits of service oriented component models and the
main concepts used in their implementations. We provide a
model that reifies important concepts and can be used to
manage the application's architecture and its dynamic
reconfigurations. Finally we propose a generic framework that
allows for the creation of specialized architecture managers,
capable of both monitoring and controlling dynamic service-
oriented component applications.

Keywords-Service oriented components, dynamic
reconfiguration, adaptive systems.

I. INTRODUCTION

Increasingly, software is required and designed to
accommodate new features after the design and deployment
stages. Software needs to dynamically adapt and evolve at
run time to minimize interruption and, if possible, never
stop running. We call this software evolution [1,2]. Software
evolution's goal is to allow applications to adapt to changing
requirements, correct themselves in case of bugs, be updated
or patched, change their architecture, adapt resource
consumption, or dynamically reconfigure for any other
number of reasons. These needs are not new and have been
addressed by numerous researchers over the years [3], but
given new techniques and design principles, dynamic
reconfiguration is becoming more popular. Among the
many approaches to achieve dynamic reconfiguration we
can mention component-oriented programming (COP) [4],
service-oriented computing (SOC) [5], and service-oriented
components [6], which are the SOC principles applied to
component models for greater flexibility.

Following this tendency through, future applications will
become highly dynamic [20], they will require ever more
rapid adaptability to better meet their goals with reduced
delay. Also, correct operation is consistently required no
matter the changing conditions, be it external changes in the
environment of the system (e.g., arrival of new devices, new

legal regulation, market opportunities), or be it internal
changes in the application itself (e.g., software errors,
security patches, resource consumption), adding to the
burden of managing dynamic applications.

Highly dynamic environments create new problems
when managing applications. Many operations require
automation because of their low-level quickly changing
details and the time constraints involved. Higher-level
abstractions are needed to better understand the application
in its entirety, and configurable policies are required to ease
administration. Because non-functional requirements will
undoubtedly vary, goals and objectives at a per-system level
are required to drive architecture management strategies.
This means that there is no “one size fits all” solution to the
problem, but many solutions according to the current needs
of the application at hand.

An application's software architecture is its internal
structure defined by the different modular units that are
composed to provide functionality. In the case of service-
oriented components, the architecture is the component
instances that are interconnected to form the application.
These component instances have dependencies that must be
met before execution is possible. As we will explain, there
are different types of dependencies which need to be treated
differently. Components also have lifecycles that affect the
architecture and must also be considered. Component
granularity is also important, because the tendency is to
have many smaller components to increase flexibility and
adaptability, but this complicates administration because the
number of bindings and dependencies increases.
Furthermore, updating and adapting software requires
handling un-deployed or previously unknown components.
These components are generally stored in external
repositories which provide necessary metadata.

In this paper we characterize dynamic reconfigurations
in service-oriented component models and provide a
framework which can be used as the basis for constructing
architecture managers that can control (e.g., perform
reconfigurations) and monitor the application. In sections II
and III we introduce service oriented computing and service
oriented components. We give an overview of dependencies
and lifecycles in section IV. In section V we present our
approach and our framework, while section VI presents our
implementation. Section VII details our use case: the impact
of dynamic reconfigurations. Finally, sections VIII and IX
provide related work and conclusions respectively.

2010 IEEE Asia-Pacific Services Computing Conference

978-0-7695-4305-5/10 $25.00 © 2010 IEEE

DOI 10.1109/APSCC.2010.99

43

II. SERVICE-ORIENTED COMPUTING

Service-oriented computing (SOC) [5,7] is a paradigm
that defines a service as the fundamental unit for application
design. Services are self-describing components that support
composition of distributed, and more recently centralized,
modular applications. Among the objectives of SOC is to
define and reduce dependencies between functional units
and to promote substitutability. By reducing dependencies,
each element can evolve separately making the application
more flexible. SOC is based on three actors:

• A service provider offers a service.
• A service consumer uses a service.
• A service registry contains references to services.
Services are described using a service specification,

which is a description of its functionality (i.e., a service
interface), and which may include its non-functional
characteristics and semantics. A service provider publishes
its service specification and the reference to the service
implementation using the service registry. Consumers may
search for services using the registry and then invoke them
once they have a reference to the implementation. This
provides discovery, selection, binding and composition of

services. In figure 1 we can see the basic architecture.
SOC provides characteristics that are exploited for

dynamic applications (applications that adapt at runtime). In
general, they provide the means to achieve substitutability,
which is the basis for dynamism. We list them next:

• Loose coupling: a consumer needs only to know
what is specified in the service specification.

• Late binding: a consumer may consult the registry
at any time to bind to a service implementation.

• Dynamic resilience: service consumers do not rely
on the same service implementation being returned.

• Location transparency: providers and consumers
are oblivious to the underlying infrastructure.

In order to build complex applications it is necessary to
compose services to provide higher-level services. Service
providers may require other services in order to operate
correctly. This entails service-dependencies, where
providers publish their services when their dependencies are
met, and they may retreat them when not.

Service-oriented applications require additional attention
and may be difficult to implement, intensive and error-
prone. The complexity involved has lead to component-
based approaches that use the SOC concepts but advocate
the separation-of-concerns principles. The next section
describes how SOC concepts are merged into component
models to provide dynamically adaptable software systems.

III. SERVICE-ORIENTED COMPONENTS
A component is a software package that encapsulates a

set of functions or data. Components can be seen as black-
boxes whose functionality is expressed by clearly defined
interfaces [4]. These interfaces are used to connect
components for communication and to compose them to
provide higher-level functions. The interface acts as the
signature for the component, consumers need only know the
interface and can be naive of its implementation. Cervantes
[6] presented the general principles of the service-oriented
component model, an SOA extension to component based
development. The proposed principles are the following:

• A service is provided functionality.
• A service is characterized by a service specification

which describes its syntax, behavior, and semantics.
• Components implement service specifications.
• The service-oriented interaction pattern is used to

resolve service dependencies at run time.
• Compositions are described using specifications.
• Service specifications provide the basis for

substitutability.
The model that results from these principles promotes

service substitutability because compositions and
dependencies are expressed in terms of specifications. This
makes it possible to develop constituent services
independently as well as have variant interchangeable
implementations. As in SOA, locality is largely irrelevant.
In centralized implementations (i.e., single memory space),
a component may provide a service but internally act as a
proxy, transparently providing distribution. In traditional
component-oriented models, selection occurs at design
time, when bindings and the architecture are specified [10]
(some models do provide run time adaptation [8,9]). The
selection process for service-oriented components occurs at
run-time. Component instances are created by the execution
environment and the application starts when the main
component's dependencies are satisfied. The service
oriented component model is thus flexible and powerful.

A. Abstraction levels
Implementations of service oriented component models

vary but require an underlying dynamic framework to
provide them with the necessary mechanisms for run-time
adaptation. Dynamicity relies on the service-oriented
computing paradigm (i.e., consumer, provider, registry,
service specification) to provide substitutability. Depending
on the specific technology, concept mappings may vary, but
for this work we provide an overview of implementations
using the object oriented paradigm.

Deployment unit or module: is used for installing,
updating and removing components. A deployment unit
provides component types (and other resources) and
contains metadata related to dependencies and features.

Component type: is the component specification. It
defines the implementation of services and the component's
dependencies (by means of service specification
dependencies). Because it implements services it is used to

Figure 1. The basic Service Oriented Architecture [5]

Service
Registry

Service
Provider

Service
Client

Lookup Publish

Bind

44

satisfy other component's service dependencies.
Component instances: these are the run-time entities

that are composed during execution. A single component-
type may be instantiated many times. Components are
bound (i.e., bindings) in order to communicate (i.e., invoke
services), letting them perform calculations, share data, etc.

B. Mapping components to objects
Service-oriented component-models are usually written

in object-oriented languages (although some do exist in
other paradigms). Components are not natively supported by
many platforms, so they may be more or less transparent
depending on the underlying framework, the abstractions,
and development model. It is important to visualize
component-to-object mappings to better understand the
dependencies that exist, which go further than clear-cut
service specifications. These mappings become ever more
interesting in centralized component models, because they
show datatypes and service references that are shared
among component instances. There are two concepts we are
interested in that affect dependencies, class and object:

Class definitions: are the basic unit of design in object
oriented programming. They specify attributes and methods,
which make them a mix of data and behavior in an
encapsulated entity. A developer, even when creating
components, writes classes. Elements from the component
model, including the component's business functions, the
actors (i.e., consumer, provider, registry), services,
specifications, datatypes (including in the specification), are
mapped to their implementations in the object oriented
language. The execution framework does not distinguish
between a type of object that represents a component,
service or datatype, they all consist of the same abstraction.

Object instances: are the instantiation of classes. These
run-time entities hold the state of the application. There is

no mapping that tells us that an object belongs to a specific
component instance or component type since these
abstractions are generally not reified by the framework.

In figure 2 we show the abstraction levels that exist in
service oriented component frameworks at run time, along
with their implementation mappings to the object oriented
paradigm. The deployment and design levels show higher
abstractions and are the views a user will work with. At the
deployment-level one sees modules (i.e., deployment units)
on the framework and can manipulate their lifecycles,
including installation and removal, which are the two basic
primitives. Modules contain component types (i.e.,
component definitions), which are instantiated by the
framework to create component instances. Component types
and component instances are also commonly reified when a
user requires more details at run time. Component types are
in fact a set of class definitions. At the class level, classes
inside modules may reference classes from other modules.
This is common, for example, for datatypes which are
specified in the service specification and shared. These
cross-references of classes exist precisely because of data
and implementation sharing. At the run-time level, we show
object instances and how they reference objects that are
defined by classes in different modules. References can be
entangled between modules even when we follow a service
oriented computing approach that promotes loose-coupling.
As a note, we provide an outlined module in the figure
(dotted rectangle) as reference to where the elements came
from, but this abstraction is not reified beyond the
deployment view.

IV. DEPENDENCIES AND LIFECYCLES

Dependencies are the primary constraint to performing
dynamic reconfigurations. Missing dependencies affect the
lifecycle of components. In our model we show that

45

implementation code is provided by modules in the form of
component types, and that the granularity of updates is the
module1. Changing the architecture at a finer grain (that of
component instances) is possible, but since no new
implementation code is provided at other levels, the changes
are limited to creating (or destroying) new instances and
changing bindings. This leads us to evaluate service
oriented component dependencies at two basic levels,
implementation dependencies, which are static, and service
dependencies, which are dynamic.

A. Dependency types
Static dependencies are those where a reconfiguration

requires restarting and reinitialization the module, causing
its full state to be lost and all instances of its components to
be destroyed. Because the unit of deployment is a module,
and at the module level is where implementation
dependencies are handled, the module is the granularity that
is directly affected. State-loss and instance destruction are
required when a module imports implementation code from
another, and the provider module changes. For example, if
module A requires classes from module B, and B updates,
we must also update A2 to use the newer implementation.
This type of dependency is common for datatypes specified
in service specifications and for modules that provide
libraries. Implementation dependencies are always
mandatory for a module to operate correctly and are costly
because they cause the destruction of dependent modules'
component instances (and states) when changes are applied.

Dynamic dependencies are those where a
reconfiguration is possible without restarting the module
and loosing state. These dependencies occur at the service
level and are the direct benefit of the principles of service
oriented computing. Provided and required services may
both change dynamically. A component may provide a
service through the registry at one moment, and remove it at
another. Also, a required service may be optional, giving the
component degraded functionality if not available. Dynamic
dependencies affect the component instance and cause
rebinding to a compatible service if a change occurs. If no
compatible dependency is found, then the component
instance is stopped, and its provided services removed, until
its dependencies can be resolved.

Other types of dependencies, which we call resource
dependencies, generally regard configuration, and may be
either static or dynamic. For example, a communication
port, according to how the component is implemented may
either be static, and require reinitialization of the module to
change, or may be dynamic having the component internally
handle the change. Also, a port may not be used by two
components, so these dependencies help avoid conflicts at
run time. Other examples include hardware devices and
files. In general, these dependencies specify if the resource

1 It is possible to create a module that is composed of only one
component, merging the deployment unit and component type concepts.

2 Module A may continue to operate with the old implementation
dependencies but it would be necessary for it not to communicate with
modules that rely on the newer version because low-level
incompatibilities may occur among classes.

they require can be shared or not (e.g., a file might be read
simultaneously) and if the dependency is static or dynamic.
The effects at run time are the same as for static
dependencies if the resource is static, and dynamic
dependencies if the resource is dynamic.

In figure 3 we present the dependencies that a module
may require and provide. In order to keep our model as
simple as possible, we hide the fact that internal component
instances are the actual implementations providing and
requiring dependencies. This is important when constructing
our dependency graph, because the amount of component
instances that will be created at run time is difficult to know
beforehand unless a static creation policy is used. In the
figure, one can note that dependencies are of three types,
implementation, service and resource.

B. Module and component lifecycles
A lifecycle is the ensemble of states that an entity may

be in, of which it is in only one at any given moment. In our
case, we are interested in the lifecycles of component
instances and modules, both at run time, and we will show
how they are intertwined. Figures 4(a) and 4(b) show the
individual lifecycles of both, components and modules.
These states illustrate dependency constraints at run time.
For example, regarding modules, if all static dependencies
are resolved, a module is valid and provides its exported
implementation (and resources) to other modules. If all
dependencies are not solved or are no longer solved, the
exported items are no longer provided to other modules.
Regarding components, if all services are available, then the
component is started and its state is set to running,
providing its services. If mandatory services are not
available or become unavailable, the component is halted
and its services removed. It is important to remember that
component types are delivered in modules, and so the
lifecycles of component instances' are directly impacted by
that of their underlying modules. In figure 4(c) we give an
overview of what this looks like. When the module is
invalid, components are destroyed. When the module is
valid, that is, its dependencies satisfied, components may
now resolve their own dependencies in order to run. As a
general note, dependencies directly impact the lifecycle of
modules and components, and thus, impact the elements that
they provide like implementation code and services.

V. A GENERIC FRAMEWORK FOR ARCHITECTURE MANAGEMENT

As seen in the previous sections, the required technical
knowledge to manage service oriented component
applications efficiently is extensive. Furthermore, let us not
forget that in highly dynamic contexts, the need to react, and
react quickly, is essential in order to meet ever changing
requirements. Given all the low-level details one must
consider, the creation of architecture managers is a difficult
task. For these reasons, automation is required.

In order to avoid falling into the trap of a single
monolithic manager that satisfies all situations but is not
flexible nor optimized, we advocate the need to develop
many smaller, simpler managers that are specialized to the

46

goals of the application at a given moment. These managers
should be interchangeable when needed, complementary if
desired, optimized for a certain purpose, quicker to
implement, and thus give way to greater adaptability. We
feel that no single manager is sufficient for all needs, and
that even the architecture manager for a single application
may require being changed over its lifetime. In general,
different objectives require different strategies, and different
strategies require different architecture managers.

Our solution to the problem of administrating service
oriented component applications is to create a framework
that provides necessary and reusable services for the task of
implementing architecture managers. As explained in earlier
sections, managing the architecture of service oriented
component applications is a delicate balance between
managing dependencies (static and dynamic), granularity
(size and quantity of components) and lifecycles. Our
framework provides abstractions in a central and unified
manner. In figure 5 we present the architecture manager
framework, including the basic components that provide
essential services to the architecture managers themselves.
These services provide the means to monitor the
application, to control and change it, to resolve and deploy
dependencies, and to communicate with other distributed
services. In the figure, we also give an overview of the
larger context and show how our framework and the
application that we are managing interact with the different
systems. We will explain the base services next.

A. Overview of the architecture manager framework
The architecture manager framework provides the

foundation for implementing architecture managers. The
services we have created are the fundamental building
blocks to ease the development of such managers. These

services provide different functions, such as monitoring,
deploying, control, communication and dependency
management. We shall present them in more detail.

1) Run-time manager: this is the essential block used for
monitoring and controlling the application at hand. It's
either co-located with the application or is fundamentally
integrated into the dynamic framework the application is
running on (or a mix of both). It is precisely this manager
that reifies the state of the application and of the dynamic
framework regarding dependencies, services, components,
modules and other abstractions.

2) Resource manager: it is also co-located with the
application or integrated into the dynamic framework and
provides information regarding the resources available on
the system and their levels of consumption. This manager is
necessary in order for the architecture manager to consider
opportune moments for dynamic reconfiguration. For
example, when the CPU and network usages are low, and
there is enough disk space, the architecture manager may
choose to pre-deploy modules to the system to avoid
contention at peak periods.

3) Resolver: is essential in order to verify that the
dependencies of a dynamic reconfiguration will be met. It
analyzes a number of modules and component types, and
may also autocomplete missing dependencies using either
repositories or distant services, or both. Without this the
architecture manager cannot be sure that what it will deploy
(or undeploy) will be able to run (or keep running), or what
the state of the application will be if a dynamic
reconfiguration is to be executed. It is also necessary for
choosing the reconfiguration actions necessary should an
unforeseen event occur and leave the application in an
invalid state. After the architecture manager, it is the most
likely component to require re-implementation since many
objectives of the architecture manager must be configurable
in the resolver (e.g., find the minimum number of modules
to satisfy dependencies, module policies and preferences).

4) Distant services manager: this component is in charge
of discovering distributed frameworks and services that are
available for use by the application. These services may be
used to satisfy dependencies of the application, and should
be considered by the resolver. The distant service manager
also handles communication, preferably transparently, since

Figure 4. Lifecycle of modules and components, separately in a) and b), then composed in c).

Running - Required services satisfied
- Provided services available

Stopped
- Required services missing
- Provided services unavailable

Starting

Stopping

b) Component Lifecycle

Validated

ValidInvalid

- Required implementation satisfied
- Implementation code provided

Invalidated

- Required implementation missing
- Implementation code not provided

a) Module Lifecycle

Valid Module

Invalid Module

- Required implementation missing
- Implementation code not provided

Component N

RunningStopped

Component 2

RunningStopped

Component 1

RunningStopped

- Provided services available at a per-component basis
- Required services missing at a per-component basis
- Implementation code is provided by the module

c) Composed lifecycles

Figure 3. Module dependencies

Module

Component

Component
Provided Services

Required Services

Provided
implementation code

Required
implementation code

Required Resources Provided Resources

47

the service bindings must performed. If transparent
distribution is not possible, then the use of this service
becomes limited since it would require the service oriented
components themselves to be distribution aware.

5) Repository manager: handles deployment units and
their metadata. It provides the necessary information to the
architecture manager and the resolver in order for them to
perform dynamic reconfigurations.

6) Architecture manager: the architecture manager the
implementation of the objectives and strategies regarding
application management. This component is specific
according to the goals of the application. It uses the other
components in the framework in order to achieve those
goals. Most of the intelligence regarding administration is
located here.

VI. IMPLEMENTATION OF THE FRAMEWORK

In order to demonstrate our approach, our framework is
both implemented using, and administers applications for,
the OSGi service platform [13] and the iPOJO component
model [14]. OSGi is a platform that provides dynamic
deployment of modules which are called bundles. iPOJO is
a service oriented component model built on top of OSGi
providing many abstractions and separating the code related
to dynamic behavior from functional code. Part of our run
time manager must be co-located with the application and
uses hooks into the OSGi platform to detect the arrival of
new modules and services, and to detect the import and
export of implementation classes which are declared in the
form of Java packages. iPOJO provides information
regarding component instances, component types and
bindings. We have also added metadata to bundles,
particularly concerning resource dependencies, because they
are not natively expressed in OSGi metadata. Our resource
manager is also partially co-located with the application,
and uses the SIGAR library [24] to obtain the resource
usage of the dynamic framework and system. Regarding

deployment, various mechanisms already exist for storing
bundles (modules), accessing their metadata and for
deploying them to a running OSGi platform. In our case, we
have opted for using OBR [25], although we feel it currently
does not meet all our needs. The distant services manager is
a simple component that delegates to ROSE[26], which uses
a proxy system to communicate transparently with distant
services. The resolver, one of the more crucial services that
must be provided, currently uses the JBOSS OSGi Resolver,
but plan on including P2 [18], the resolver used in Eclipse,
since it provides more functionality. Finally, using the
available services that we defined, we have implemented an
architecture management component for a specific use case
that we present in the next section. It should be noted, that
while certain services require partial co-location, we provide
a communication mechanism, using the XMPP protocol, to
send events and actions to and from the dynamic framework
under management. Thanks to the OSGi common base, we
have the liberty of co-locating all services with the
application, providing rapid analysis of events but also
disturbing the application, or, distributing them increasing
latency but also improving isolation.

VII. USE CASES

There are many use cases where an architecture manager
for a service-oriented component application is useful. To
mention a few, a manager for minimizing application
downtime by ensuring dependencies are always met and
pre-calculating replacement dependencies, should a
dynamic reconfiguration be necessary. Another use is to
optimize a specific resource, such as CPU consumption
(given the modules are annotated with such non-functional
metadata), thus deploying the modules that implement the
required functionality (i.e., service specification) and
minimize usage of the resource. We have taken a particular
interest in the impact of dynamic reconfigurations and have
implemented an architecture manager for impact analysis to

48

validate our approach, which we describe next.

A. The impact of dynamic reconfigurations
Dynamic reconfigurations, even following the principles

of service oriented computing, may be costly and have a
stronger impact than one might consider if only looking at
service dependencies. In the previous sections we presented
the different types of dependencies (section IV.A) and how
they affect the lifecycle of modules and components at run
time. When changes to a dependency occur, the impact on
dependents can be that of total state-loss for the dependent,
in the case of static dependencies, or simply rebinding to
another service in the case of dynamic dependencies. Our
architecture manager attempts to calculate this impact. We
create a model of the run time dependencies, before
reconfigurations are applied. We then perform the
reconfiguration to the in-memory model in order to see the
effects beforehand. Reconfigurations are expressed at high
abstraction levels (e.g., the module level), simplifying the
task of deployment and configuration, and sent to the
architecture manager. (Our method does not inhibit using
low-level reconfigurations, e.g., individual component
instances, but we believe that higher abstractions simplify
platform administration.) For example, an administrator
decides to update a module. Our architecture manager
calculates the impact on dependencies at different levels
across the application and according to dependency types,
and responds with a list of modules, component types and
component instances that will be stopped, started, restarted
installed, uninstalled, changed bindings, state-loss, and so
forth. In order to do this, our in memory model is actually a
dependency graph, where nodes are component instances
(nodes also reference their parent module). Edges between
nodes are colored and labeled in order to distinguish both
the dependency (label) and the dependency type (color). For
example, the label of a service-dependency specifies the
service specification in question (e.g., printer-service), while
the color (e.g., red) specifies a dynamic dependency.

It is important that all dependencies be reified for them
to be evaluated. Resource dependencies, such as ports, are a
special case and may cause conflicts between components.
To complete the graph with these dependencies, a new node
is created to represent the resource (e.g., port 8080) and an
edge of the type of dependency (e.g., static + non-shareable)
is created. The architecture manager verifies the edges to
these nodes to avoid conflicts for static or non-shareable.

Regarding impact, for each reconfiguration that is
applied to the model, we take calculate the effect on existing
components and modules. There are two types of impact:
Dynamic, which affects component instances. If a dynamic
dependency exists to a component that changes, the
dependent component will require a rebind to find another
suitable service (or wait for the same service to return). If no
suitable service is found, the component is stopped. In either
case, the impact is to rebind or stop, and it is made explicit.
An impacted component may affect other dependent
components, causing them to stop or rebind, and so on, in a
domino effect. Static dependencies affect both modules and
components, because components' lifecycles depend on

those of modules'. If an implementation dependency
changes, all component instances of the dependent modules
are destroyed causing state-loss. This affects dependent
modules and components and the effects must be
propagated. Basically, all statically dependent modules are
restarted in a similar domino effect.

The total cost of a dynamic reconfiguration is the sum of
the affected modules, the component instances lost (state-
loss), the (re)creation of component instances, the number
of re-bindings, the modules installed, the modules restarted
and the components and modules that do not start because
of unsatisfied dependencies. If non-functional component
metadata were available, the manager could calculate the
total resources used in a dynamic reconfiguration (e.g.,
memory, cpu, disk) by adding the individual resource
consumption for each reconfigured element. At the moment,
we are limited to the network consumption and disk space
usage, since the size of bundles is easily obtainable.

An additional element we have added is to automatically
satisfy missing dependencies, in order to minimize
downtime. In our case, any dependency that is calculated to
be missing in the application after a proposed
reconfiguration, is satisfied by deploying the necessary
modules or, if possible, by binding to a distant service.

We have tested our tool on the JOnAS application server
which uses OSGi at its core [15]. With a common install of
around 150 bundles and a highly complicated dependency
graph centered around a number of crucial bundles, we note
that the impact of dynamic reconfigurations is costly.

VIII. RELATED WORK

Most work relating to dynamic reconfiguration in
centralized software has focused on the reconfiguration
mechanisms themselves, and is visible in component models
such as Fractal [8], Koala [9] and OSGi [13]. These
component models tend to simplify reconfiguration thanks
to mechanisms introduced into the component membrane,
such as proxies that detect quiescent states (e.g., Fractal), or
the use of specific API, development models and
architecture approaches, as is the case for OSGi. Other
work, as presented by Oreizy and Taylor [16,17] present
software adaptation and compare architectural styles for run
time adaptation, but focus on distributed applications and do
not look at component models or centralized mechanisms.
In our work, we provide an framework for the construction
of architecture managers and provide a specific architecture
manager that analyzes the impact of dynamic
reconfigurations for (mainly) centralized, service oriented
component frameworks.

Related to OSGi we can mention P2 [18], an advanced
dependency management and module distribution system
provided for the Eclipse Framework. This work focuses on
resolving constraints and dependencies, but does not focus
on the architecture administration necessary on the platform
itself. Further, the impact of these deployments is not
calculated. Other work that is similar to this is that of
Touseau [11,12] which seeks to limit the impact of
reappearing services by means of SLA mechanisms. There

49

is also work being done to ensure that metadata to describe
modules and components is correct by means of static
analysis [19]. We find this work to be necessary to ensure
dynamic reconfigurations, although for the time being our
approach supposes metadata to always be correct.

Finally, we feel our work has brought us close to the
domain of autonomic computing. The general purpose of
Autonomic Computing is to enable self-management of
software systems and to minimize human intervention [21].
Our work is similar in this aspect, because we attempt to
increase automation of architecture management by
providing a foundation framework from where to start. One
difference is we focus on low-level details, such as
implementation dependencies in service oriented component
frameworks, and not on high-level strategies, since the
underlying framework for implementing those strategies
does not exist for service oriented component platforms.
Rainbow [23] is a similar framework conceptually; but
focuses on distributed systems. Also, the work done in
CEYLON [22] is interesting in that they compose smaller,
simpler, reusable strategies, to obtain otherwise complicated
autonomic managers. Implementing a composing
mechanism for simple architecture managers in our
framework would certainly be interesting, but we have not
worked out how possible conflicts between managers would
need to be solved, nor if this is wise solution due to added
resource consumption and complexity of the manager.
Furthermore, we have not found comparable work regarding
our use case, the impact of dynamic reconfigurations in
these types of frameworks.

IX. CONCLUSION

In this paper we have proposed a generic framework for
the construction of architecture managers. We propose that
architecture managers should be simple, optimized for
specific goals, and interchangeable. (Different problems
most likely require different solutions, even if the building
blocks are the same.) We have created an architecture
manager capable of analyzing the impact of dynamic
reconfigurations, before or after they take place, and of
resolving missing dependencies to keep the application
running as “best as possible”. We have also specified
different types of dependencies that exist in modern service
oriented component models and how they affect otherwise
loosely coupled components at run time and why they need
to be properly considered in order to coherently manage an
application's architecture. Regarding our use case, we show
that it is necessary to have an understanding of the impact of
dynamic reconfigurations because of their hidden and
implicit cost, especially considering the domino effect that
takes place across the application. In the future, we plan on
using our current framework to construct an architecture

administrator capable of evaluating the correctness of
dynamic reconfigurations and which provides mechanisms
and strategies to minimize the impact to localized areas of
the architecture (e.g., temporary service substitution,
reconfiguration at off-peak periods). We will continue to
focus our work on highly dynamic environments, where
consumers and providers may continually appear and
disappear without rapidly and without notice.

REFERENCES

[1] Lorcan Coyle et al., “Guest Editors' Introduction: Evolving Critical
Systems”, Computer, vol. 43, no. 5, pp. 28-33, May 2010

[2] Bernard Cohen, Philip Boxer, “Why Critical Systems Need Help to
Evolve”, Computer, vol. 43, no. 5, pp. 56-63, May 2010

[3] Peyman Oreizy et al., “Architecture-based runtime software
evolution”, ICSE, p.177-186, April 19-25, 1998, Kyoto, Japan

[4] C. Szyperski, Component Software: “Beyond Object-Oriented
Programming”, Addison-Wesley Longman Publishing, 2002, p. 448.

[5] M. P. Papazoglou , D. Georgakopoulos, “Introduction to Service
Oriented Computing”, ACM, v.46 n.10, October 2003

[6] H. Cervantes and R.S. Hall, “Autonomous adaptation to dynamic
availability using a service-oriented component model”, ICSE, 2004

[7] M.N. Huhns and M.P. Singh, “Service-Oriented Computing: Key
Concepts and Principles,” IEEE Internet Computing, 2005

[8] E. Bruneton et al., “The FRACTAL component model and its support
in Java”, SPE, v.36 n.11-12, p.1257-1284, September 2006

[9] R. Van Ommering, et al., “The Koala component model for consumer
electronics software,” Computer, vol. 33, no. 3, 2000

[10] Marino, J. and Rowley, M. 2009 Understanding SCA (Service
Component Architecture). 1st. Addison-Wesley Professional.

[11] L. Touseau et al.,: “Towards a SLA-based Approach to Handle
Service Disruptions”, IEEE SCC (1) 2008: 415-422

[12] Lionel Touseau, PhD dissertation “Politique de liaison aux services
intermittents dirigée par les accords de niveau de service”, Université
Joseph Fourier, Grenoble, may 2010

[13] OSGi Service Platform Core Spec, 2005, http://osgi.org.
[14] C. Escoffier and R.S. Hall, “Dynamically Adaptable Applications

with iPOJO Service Components”, Software Composition, 2007.
[15] M. Desertot, et al., “A Dynamic Service-Oriented Implementation for

Java EE Servers”,IEEE Conference on Services Computing, 2006
[16] P. Oreizy et al., "Runtime software adaptation: framework,

approaches, and styles," ICSE, ACM, 2008.
[17] Richard N. Taylor et al., "Architectural Styles for Runtime Software

Adaptation", Conference on Software Architecture 2009
[18] D. Le Berre, P. Rapicaul, “Dependency management for the eclipse

ecosystem: eclipse p2, metadata and resolution”, IWOCE, 2009
[19] J. Bauml, P. Brada, “Automated Versioning in OSGi: A Mechanism

for Component Software Consistency Guarantee”. EUROMICRO-
SEAA 2009: 428-435

[20] E. D. Nitto, C. Ghezzi, A. Metzger, M. P. Papazoglou, and K. Pohl,
"A journey to highly dynamic, self-adaptive service-based
applications," Automated Software Engineering, 2008.

[21] D. M. Kephart, Jeffrey O. et Chess. The vision of autonomic
computing. Computer, 36, 2003.

[22] Y. Maurel et al., "CEYLON: A Service-Oriented Framework for
Building Autonomic Managers," EASE, 2010, pp. 3-11.

[23] A. Huang, D. Garlan, and B. Schmerl, "Rainbow: Architecture-Based
Self-Adaptation with Reusable Infrastructure," International
Conference on Autonomic Computing, 2004, p. 276.

[24] http://support.hyperic.com/display/SIGAR/Home
[25] OSGi Alliance. RFC-0112 Bundle Repository, February 2006.
[26] http://wiki.chameleon.ow2.org/xwiki/bin/view/Main/Rose

50

