
A framework for managing dynamic service-oriented component architectures

Walter Rudametkin1,2 , Lionel Touseau1, Didier Donsez1, Francois Exertier2

1 Laboratoire d'Informatique de Grenoble
Grenoble, France

{Name.Lastname}@imag.fr

2 Bull SAS
Echirolles, France

{Name.Lastname}@bull.net

Abstract—Software development is moving from monolithic to
modular,  dynamically  composable  applications.  Modularity
and dynamicity are the basis for software evolution since they
provide the means  of  adapting  and updating  an application.
Currently, service-oriented component  models are one of the
most advanced technologies for creating dynamic applications.
These  component  models,  which inherit  concepts  from both
component-based  software  engineering  and  service  oriented
computing, provide a programming model that both supports
and  encourages  dynamic  reconfigurations.  Although
reconfigurations  are possible,  it  is  still  difficult  to manage a
dynamic  application's  architecture,  especially  in  highly
dynamic environments. In this paper, we provide an overview
of the benefits of service oriented component models and the
main  concepts  used  in  their  implementations.  We provide  a
model  that  reifies  important  concepts  and can  be  used  to
manage  the  application's  architecture  and  its  dynamic
reconfigurations. Finally we propose a generic framework that
allows for  the creation of  specialized architecture managers,
capable of both monitoring and controlling dynamic service-
oriented component applications. 

Keywords-Service  oriented  components,  dynamic
reconfiguration, adaptive systems.

I. INTRODUCTION

Increasingly,  software  is  required  and  designed  to
accommodate new features after the design and deployment
stages. Software needs to dynamically adapt and evolve at
run  time  to  minimize  interruption  and,  if  possible,  never
stop running. We call this software evolution [1,2]. Software
evolution's goal is to allow applications to adapt to changing
requirements, correct themselves in case of bugs, be updated
or  patched,  change  their  architecture,  adapt  resource
consumption,  or  dynamically  reconfigure  for  any  other
number of reasons. These needs are not new and have been
addressed by numerous researchers over the years [3], but
given  new  techniques  and  design  principles,  dynamic
reconfiguration  is  becoming  more  popular.  Among  the
many  approaches  to  achieve  dynamic  reconfiguration  we
can mention component-oriented programming (COP) [4],
service-oriented computing (SOC) [5], and service-oriented
components  [6],  which  are  the  SOC principles  applied to
component models for greater flexibility.

Following this tendency through, future applications will
become highly dynamic  [20],  they will  require ever  more
rapid  adaptability  to  better  meet  their  goals  with  reduced
delay.  Also,  correct  operation  is  consistently  required  no
matter the changing conditions, be it external changes in the
environment of the system (e.g., arrival of new devices, new

legal  regulation,  market  opportunities),  or  be  it  internal
changes  in  the  application  itself  (e.g.,  software  errors,
security  patches,  resource  consumption),  adding  to  the
burden of managing dynamic applications.

Highly  dynamic  environments  create  new  problems
when  managing  applications.  Many  operations  require
automation  because  of  their  low-level  quickly  changing
details  and  the  time  constraints  involved.  Higher-level
abstractions are needed to better understand the application
in its entirety, and configurable policies are required to ease
administration.  Because  non-functional  requirements  will
undoubtedly vary, goals and objectives at a per-system level
are  required  to  drive  architecture  management strategies.
This means that there is no “one size fits all” solution to the
problem, but many solutions according to the current needs
of the application at hand.

An  application's  software  architecture  is  its  internal
structure  defined  by  the  different  modular  units  that  are
composed to provide functionality.  In the case of service-
oriented  components,  the  architecture  is  the  component
instances  that  are  interconnected  to  form  the  application.
These component instances have dependencies that must be
met before execution is possible. As we will explain, there
are different types of dependencies which need to be treated
differently. Components also have lifecycles that affect the
architecture  and  must  also  be  considered.  Component
granularity  is  also  important,  because the  tendency  is  to
have many smaller  components to increase flexibility  and
adaptability, but this complicates administration because the
number  of  bindings  and  dependencies  increases.
Furthermore,  updating  and  adapting  software  requires
handling un-deployed or previously unknown components.
These  components  are  generally  stored  in  external
repositories which provide necessary metadata.

In this paper we characterize dynamic reconfigurations
in  service-oriented  component  models  and  provide  a
framework which can be used as the basis for constructing
architecture  managers  that  can  control  (e.g.,  perform
reconfigurations) and monitor the application. In sections II
and III we introduce service oriented computing and service
oriented components. We give an overview of dependencies
and lifecycles in section  IV. In section  V we present  our
approach and our framework, while section VI presents our
implementation. Section VII details our use case: the impact
of dynamic reconfigurations. Finally,  sections  VIII and  IX
provide related work and conclusions respectively.
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II. SERVICE-ORIENTED COMPUTING

Service-oriented computing (SOC) [5,7] is  a paradigm
that defines a service as the fundamental unit for application
design. Services are self-describing components that support
composition of distributed,  and more  recently  centralized,
modular  applications.  Among the objectives of SOC is to
define  and  reduce  dependencies  between  functional  units
and to promote substitutability.  By reducing dependencies,
each element can evolve separately making the application
more flexible. SOC is based on three actors:

• A service provider offers a service.
• A service consumer uses a service. 
• A service registry contains references to services. 
Services  are  described  using  a  service  specification,

which  is  a  description  of  its  functionality  (i.e.,  a  service
interface),  and  which  may  include  its  non-functional
characteristics and semantics. A service provider publishes
its  service  specification  and  the  reference  to  the  service
implementation using the service registry.  Consumers may
search for services using the registry and then invoke them
once  they  have  a  reference  to  the  implementation.  This
provides  discovery,  selection,  binding and composition of

services. In figure 1 we can see the basic architecture.
SOC  provides  characteristics  that  are  exploited  for

dynamic applications (applications that adapt at runtime). In
general, they provide the means to achieve substitutability,
which is the basis for dynamism. We list them next:

• Loose  coupling: a  consumer  needs  only  to  know
what is specified in the service specification.

• Late binding:  a consumer may consult the registry
at any time to bind to a service implementation. 

• Dynamic resilience:  service consumers do not rely
on the same service implementation being returned. 

• Location  transparency:  providers  and  consumers
are oblivious to the underlying infrastructure.

In order to build complex applications it is necessary to
compose services to provide higher-level services.  Service
providers  may  require  other  services  in  order  to  operate
correctly.  This  entails  service-dependencies,  where
providers publish their services when their dependencies are
met, and they may retreat them when not.

Service-oriented applications require additional attention
and  may  be  difficult  to  implement,  intensive  and  error-
prone.  The  complexity  involved  has  lead  to  component-
based approaches that use the SOC concepts but advocate
the  separation-of-concerns  principles.  The  next  section
describes  how SOC concepts  are  merged  into  component
models to provide dynamically adaptable software systems. 

III. SERVICE-ORIENTED COMPONENTS 
A component is a software package that encapsulates a

set of functions or data. Components can be seen as black-
boxes whose functionality  is expressed by clearly defined
interfaces  [4].  These  interfaces  are  used  to  connect
components  for  communication  and  to  compose  them  to
provide  higher-level  functions.  The  interface  acts  as  the
signature for the component, consumers need only know the
interface and can be naive of its implementation. Cervantes
[6] presented the general principles of the service-oriented
component  model,  an SOA extension to component  based
development. The proposed principles are the following:

• A service is provided functionality. 
• A service is characterized by a service specification

which describes its syntax, behavior, and semantics.
• Components implement service specifications.
• The service-oriented  interaction  pattern  is  used  to

resolve service dependencies at run time. 
• Compositions are described using specifications. 
• Service  specifications  provide  the  basis  for

substitutability. 
The model  that  results  from these  principles promotes

service  substitutability  because  compositions  and
dependencies are expressed in terms of specifications. This
makes  it  possible  to  develop  constituent  services
independently  as  well  as  have  variant  interchangeable
implementations. As in SOA, locality is largely irrelevant.
In centralized implementations (i.e., single memory space),
a component may provide a service but internally act as a
proxy,  transparently  providing  distribution.  In  traditional
component-oriented  models,   selection  occurs  at  design
time, when bindings and the architecture are specified [10]
(some models  do provide run time adaptation [8,9]).  The
selection process for service-oriented components occurs at
run-time. Component instances are created by the execution
environment  and  the  application  starts  when  the  main
component's  dependencies  are  satisfied.  The  service
oriented component model is thus flexible and powerful.

A. Abstraction levels
Implementations of service oriented component models

vary  but  require  an  underlying  dynamic  framework  to
provide them with the necessary mechanisms for run-time
adaptation.  Dynamicity  relies  on  the  service-oriented
computing  paradigm  (i.e.,  consumer,  provider,  registry,
service specification) to provide substitutability. Depending
on the specific technology, concept mappings may vary, but
for this  work we provide an overview of implementations
using the object oriented  paradigm.

Deployment  unit  or  module: is  used  for  installing,
updating  and  removing  components.  A  deployment  unit
provides  component  types  (and  other  resources)  and
contains metadata related to dependencies and features.

Component  type:  is  the  component  specification.  It
defines the implementation of services and the component's
dependencies  (by  means  of  service  specification
dependencies). Because it implements services it is used to

Figure 1. The basic Service Oriented Architecture [5]
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satisfy other component's service dependencies.
Component  instances:  these  are  the  run-time  entities

that  are composed during execution.  A single component-
type  may  be  instantiated  many  times.  Components  are
bound (i.e., bindings) in order to communicate (i.e., invoke
services), letting them perform calculations, share data, etc.

B. Mapping components to objects
Service-oriented component-models are usually written

in  object-oriented  languages  (although  some  do  exist  in
other paradigms). Components are not natively supported by
many platforms,  so  they may be more or less transparent
depending on the  underlying  framework,  the  abstractions,
and  development  model.  It  is  important  to  visualize
component-to-object  mappings  to  better  understand  the
dependencies  that  exist,  which  go  further  than  clear-cut
service  specifications.  These mappings  become ever more
interesting in centralized component  models,  because they
show  datatypes  and  service  references  that  are  shared
among component instances. There are two concepts we are
interested in that affect dependencies, class and object:

Class definitions: are the basic unit of design in object
oriented programming. They specify attributes and methods,
which  make  them  a  mix  of  data  and  behavior  in  an
encapsulated  entity.  A  developer,  even  when  creating
components,  writes classes.  Elements from the component
model,  including  the  component's  business  functions,  the
actors  (i.e.,  consumer,  provider,  registry),  services,
specifications, datatypes (including in the specification), are
mapped  to  their  implementations  in  the  object  oriented
language.  The  execution  framework  does  not  distinguish
between  a  type  of  object  that  represents  a  component,
service or datatype, they all consist of the same abstraction.

Object instances: are the instantiation of classes. These
run-time entities hold the state of the application. There is

no mapping that tells us that an object belongs to a specific
component  instance  or  component  type  since  these
abstractions are generally not reified by the framework.

In figure  2 we show the abstraction levels that exist in
service oriented component frameworks at run time, along
with their implementation mappings to the object oriented
paradigm.  The deployment  and design levels show higher
abstractions and are the views a user will work with. At the
deployment-level one sees modules (i.e., deployment units)
on  the  framework  and  can  manipulate  their  lifecycles,
including installation and removal, which are the two basic
primitives.  Modules  contain  component  types  (i.e.,
component  definitions),  which  are  instantiated  by  the
framework to create component instances. Component types
and component instances are also commonly reified when a
user requires more details at run time. Component types are
in fact a set of class definitions. At the class level, classes
inside modules may reference classes from other modules.
This  is  common,  for  example,  for  datatypes  which  are
specified  in  the  service  specification  and  shared.  These
cross-references  of classes  exist  precisely because  of data
and implementation sharing. At the run-time level, we show
object  instances  and  how they  reference  objects  that  are
defined by classes in different modules. References can be
entangled between modules even when we follow a service
oriented computing approach that promotes loose-coupling.
As  a  note,  we  provide  an  outlined  module  in  the  figure
(dotted rectangle) as reference to where the elements came
from,  but  this  abstraction  is  not  reified  beyond  the
deployment view.

IV. DEPENDENCIES AND LIFECYCLES

Dependencies are the primary constraint to performing
dynamic reconfigurations. Missing dependencies affect the
lifecycle  of  components.  In  our  model  we  show  that
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implementation code is provided by modules in the form of
component types, and that the granularity of updates is the
module1. Changing the architecture at a finer grain ( that of
component  instances)  is  possible,  but  since  no  new
implementation code is provided at other levels, the changes
are  limited  to  creating  (or  destroying)  new instances  and
changing  bindings.  This  leads  us  to  evaluate  service
oriented  component  dependencies  at  two  basic  levels,
implementation dependencies, which are static, and service
dependencies, which are dynamic. 

A. Dependency types
Static  dependencies are  those  where  a  reconfiguration

requires restarting and reinitialization the module,  causing
its full state to be lost and all instances of its components to
be destroyed. Because the unit of deployment is a module,
and  at  the  module  level  is  where  implementation
dependencies are handled, the module is the granularity that
is directly affected. State-loss and instance destruction are
required when a module imports implementation code from
another, and the provider module changes. For example, if
module A requires classes from module B, and B updates,
we must also update A2 to use the newer implementation.
This type of dependency is common for datatypes specified
in  service  specifications  and  for  modules  that  provide
libraries.  Implementation  dependencies  are  always
mandatory for a module to operate correctly and are costly
because they cause  the destruction of dependent  modules'
component instances (and states) when changes are applied.

Dynamic  dependencies  are  those  where  a
reconfiguration  is  possible  without  restarting  the  module
and loosing state. These dependencies occur at the service
level and are the direct benefit  of the principles of service
oriented  computing.  Provided  and  required  services  may
both  change dynamically.  A  component  may  provide  a
service through the registry at one moment, and remove it at
another. Also, a required service may be optional, giving the
component degraded functionality if not available. Dynamic
dependencies  affect  the  component  instance  and  cause
rebinding to a compatible service if a change  occurs. If no
compatible  dependency  is  found,  then  the  component
instance is stopped, and its provided services removed, until
its dependencies can be resolved.

Other  types  of  dependencies,  which  we  call  resource
dependencies,  generally  regard configuration,  and may be
either  static  or  dynamic.  For  example,  a  communication
port,  according to how the component is implemented may
either be static, and require reinitialization of the module to
change, or may be dynamic having the component internally
handle  the  change.  Also,  a  port  may not  be used  by two
components,  so these dependencies  help avoid conflicts at
run  time.  Other  examples  include  hardware  devices  and
files. In general, these dependencies specify if the resource

1 It is possible to create a module that is composed of only one
component, merging the deployment unit and component type concepts.

2 Module A may continue to operate with the old implementation
dependencies but it would be necessary for it not to communicate with
modules that rely on the newer version because low-level
incompatibilities may occur among classes.

they require can be shared or not (e.g., a file might be read
simultaneously) and if the dependency is static or dynamic.
The  effects  at  run  time  are  the  same  as  for  static
dependencies  if  the  resource  is  static,  and dynamic
dependencies if the resource is dynamic.

In figure  3 we present the dependencies that a module
may  require  and  provide.  In  order  to  keep  our  model  as
simple as possible, we hide the fact that internal component
instances  are  the  actual  implementations  providing  and
requiring dependencies. This is important when constructing
our  dependency graph,  because  the amount  of component
instances that will be created at run time is difficult to know
beforehand  unless  a  static  creation  policy  is  used.  In  the
figure,  one can note that  dependencies  are  of three types,
implementation, service and resource.

B. Module and component lifecycles
A lifecycle is the ensemble of states that an entity may

be in, of which it is in only one at any given moment. In our
case,  we  are  interested  in  the  lifecycles  of  component
instances and modules, both at run time, and we will show
how they are intertwined.  Figures  4(a) and  4(b) show the
individual  lifecycles  of  both,  components  and  modules.
These states illustrate  dependency constraints  at run time.
For example, regarding modules,  if all static dependencies
are resolved,  a  module  is  valid  and provides  its  exported
implementation  (and  resources)  to  other  modules.  If  all
dependencies  are  not  solved  or  are  no  longer  solved,  the
exported  items  are  no  longer  provided  to  other  modules.
Regarding components, if all services are available, then the
component  is  started  and  its  state  is  set  to  running,
providing  its  services.  If  mandatory  services  are  not
available  or become unavailable,  the  component  is  halted
and its services removed. It is important to remember that
component  types  are  delivered  in  modules,  and  so  the
lifecycles of component instances' are directly impacted by
that of their underlying modules. In figure  4(c) we give an
overview  of  what  this  looks  like.  When  the  module  is
invalid,  components  are  destroyed.  When  the  module  is
valid,  that  is,  its  dependencies  satisfied,  components  may
now resolve their own dependencies in order to run. As a
general note, dependencies directly impact the lifecycle of
modules and components, and thus, impact the elements that
they provide like implementation code and services.

V. A GENERIC FRAMEWORK FOR ARCHITECTURE MANAGEMENT

As seen in the previous sections, the required  technical
knowledge  to  manage  service  oriented  component
applications efficiently is extensive. Furthermore, let us not
forget that in highly dynamic contexts, the need to react, and
react  quickly,  is  essential  in  order  to  meet  ever  changing
requirements.  Given  all  the  low-level  details  one  must
consider, the creation of architecture managers is a difficult
task. For these reasons, automation is required.

In  order  to  avoid  falling  into  the  trap  of  a  single
monolithic  manager  that  satisfies  all  situations  but  is  not
flexible  nor  optimized,  we  advocate  the  need  to  develop
many smaller, simpler managers that are specialized to the
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goals of the application at a given moment. These managers
should be interchangeable when needed, complementary if
desired,  optimized  for  a  certain  purpose,  quicker  to
implement,  and thus give way to greater adaptability.  We
feel that no single manager is sufficient for all needs, and
that even the architecture manager for a single application
may  require  being  changed  over  its  lifetime.  In  general,
different objectives require different strategies, and different
strategies require different architecture managers.

Our  solution  to  the  problem of  administrating  service
oriented component  applications  is  to  create  a  framework
that provides necessary and reusable services for the task of
implementing architecture managers. As explained in earlier
sections,  managing  the  architecture  of  service  oriented
component  applications  is  a  delicate  balance  between
managing  dependencies  (static  and  dynamic),  granularity
(size  and  quantity  of  components)  and  lifecycles.  Our
framework  provides  abstractions  in  a  central  and  unified
manner.  In  figure  5 we  present  the  architecture  manager
framework,  including  the  basic  components  that  provide
essential services to the architecture managers themselves.
These  services  provide  the  means  to  monitor  the
application, to control and change it, to resolve and deploy
dependencies,  and  to  communicate  with  other  distributed
services.  In  the  figure,  we  also  give  an  overview of  the
larger  context  and  show  how  our  framework  and  the
application that we are managing interact with the different
systems. We will explain the base services next.

A. Overview of the architecture manager framework
The  architecture  manager  framework  provides  the

foundation  for  implementing  architecture  managers.  The
services  we  have  created  are  the  fundamental  building
blocks  to  ease  the  development  of  such  managers.  These

services  provide  different  functions,  such  as  monitoring,
deploying,  control,  communication  and  dependency
management. We shall present them in more detail.

1)  Run-time manager: this is the essential block used for
monitoring  and  controlling  the  application  at  hand.  It's
either  co-located with  the  application or is  fundamentally
integrated  into  the  dynamic  framework  the  application  is
running on (or a mix of both). It is precisely this manager
that reifies the state of the application and of the dynamic
framework  regarding  dependencies,  services,  components,
modules and other abstractions.

2)   Resource  manager: it  is  also  co-located  with  the
application or integrated into  the dynamic  framework and
provides information regarding  the resources  available  on
the  system and their levels of consumption. This manager is
necessary in order for the architecture manager to consider
opportune  moments  for  dynamic  reconfiguration.  For
example, when the CPU and network usages are low, and
there is  enough disk space,  the architecture manager  may
choose  to  pre-deploy  modules  to  the  system  to  avoid
contention at peak periods.

3)   Resolver:  is  essential  in  order  to  verify  that  the
dependencies of a dynamic reconfiguration will be met.  It
analyzes  a number  of modules  and component  types,  and
may also autocomplete  missing  dependencies  using  either
repositories  or  distant  services,  or  both.  Without  this  the
architecture manager cannot be sure that what it will deploy
(or undeploy) will be able to run (or keep running), or what
the  state  of  the  application  will  be  if  a  dynamic
reconfiguration is  to  be executed.  It  is  also  necessary for
choosing  the  reconfiguration  actions  necessary  should  an
unforeseen  event  occur  and  leave  the  application  in  an
invalid state. After the architecture manager, it is the most
likely component to require re-implementation since many
objectives of the architecture manager must be configurable
in the resolver (e.g., find the minimum number of modules
to satisfy dependencies, module policies and preferences).

4)  Distant services manager: this component is in charge
of discovering distributed frameworks and services that are
available for use by the application. These services may be
used to satisfy dependencies of the application, and should
be considered by the resolver. The distant service manager
also handles communication, preferably transparently, since

Figure 4. Lifecycle of modules and components, separately in a) and b), then composed in c).

Running - Required services satisfied
- Provided services available

Stopped
- Required services missing
- Provided services unavailable

Starting

Stopping

b) Component Lifecycle

Validated

ValidInvalid

- Required implementation satisfied
- Implementation code provided

Invalidated

- Required implementation missing
- Implementation code not provided

a) Module Lifecycle

Valid Module

Invalid Module

- Required implementation missing
- Implementation code not provided

Component N

RunningStopped

Component 2

RunningStopped

Component 1

RunningStopped

- Provided services available at a per-component basis
- Required services missing at a per-component basis
- Implementation code is provided by the module

c) Composed lifecycles

Figure 3. Module dependencies

Module

Component

Component
Provided Services

Required Services

Provided 
implementation code

Required 
implementation code

Required Resources Provided Resources

47



the  service  bindings  must  performed.  If  transparent
distribution  is  not  possible,  then  the  use  of  this  service
becomes limited since it would require the service oriented
components themselves to be distribution aware.

5)   Repository  manager: handles  deployment  units  and
their metadata. It provides the necessary information to the
architecture manager and the resolver in order for them to
perform dynamic reconfigurations.

6)  Architecture manager: the architecture  manager  the
implementation  of  the  objectives  and  strategies  regarding
application  management.  This  component  is  specific
according to the goals of the application. It uses the other
components  in  the  framework  in  order  to  achieve  those
goals.  Most of the intelligence regarding administration is
located here.

VI. IMPLEMENTATION OF THE FRAMEWORK

In order to demonstrate our approach, our framework is
both implemented using,  and administers applications for,
the OSGi service platform [13] and the iPOJO component
model  [14].  OSGi  is  a  platform  that  provides  dynamic
deployment of modules which are called bundles. iPOJO is
a service oriented component model built on top of OSGi
providing many abstractions and separating the code related
to dynamic behavior from functional code. Part of our run
time manager must  be co-located with the application and
uses hooks into the OSGi platform to detect the arrival of
new modules  and  services,  and  to  detect  the  import  and
export of implementation classes which are declared in the
form  of  Java  packages.  iPOJO  provides  information
regarding  component  instances,  component  types  and
bindings.  We  have  also  added  metadata  to  bundles,
particularly concerning resource dependencies, because they
are not natively expressed in OSGi metadata. Our resource
manager  is  also  partially  co-located  with  the  application,
and  uses  the  SIGAR  library  [24]  to  obtain  the  resource
usage  of  the  dynamic  framework  and  system.  Regarding

deployment,  various  mechanisms  already exist  for  storing
bundles  (modules),  accessing  their  metadata  and  for
deploying them to a running OSGi platform. In our case, we
have opted for using OBR [25], although we feel it currently
does not meet all our needs. The distant services manager is
a simple component that delegates to ROSE[26], which uses
a proxy system to communicate  transparently  with  distant
services. The resolver, one of the more crucial services that
must be provided, currently uses the JBOSS OSGi Resolver,
but plan on including P2 [18], the resolver used in Eclipse,
since  it  provides  more  functionality.  Finally,  using  the
available services that we defined, we have implemented an
architecture management component for a specific use case
that we present in the next section. It should be noted, that
while certain services require partial co-location, we provide
a communication mechanism, using the XMPP protocol, to
send events and actions to and from the dynamic framework
under management. Thanks to the OSGi common base, we
have  the  liberty  of  co-locating  all  services  with  the
application,  providing  rapid  analysis  of  events  but  also
disturbing the application, or,  distributing them increasing
latency but also improving isolation.

VII. USE CASES

There are many use cases where an architecture manager
for a service-oriented component  application is useful.  To
mention  a  few,  a  manager  for  minimizing  application
downtime  by  ensuring  dependencies  are  always  met  and
pre-calculating  replacement  dependencies,  should  a
dynamic  reconfiguration  be  necessary.  Another  use  is  to
optimize  a  specific  resource,  such  as  CPU  consumption
(given the modules are annotated with such non-functional
metadata),  thus deploying the modules that implement  the
required  functionality  (i.e.,  service  specification)  and
minimize usage of the resource. We have taken a particular
interest in the impact of dynamic reconfigurations and have
implemented an architecture manager for impact analysis to
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validate our approach, which we describe next.

A. The impact of dynamic reconfigurations
Dynamic reconfigurations, even following the principles

of  service  oriented  computing,  may be costly  and have  a
stronger impact than one might consider if only looking at
service dependencies. In the previous sections we presented
the different types of dependencies (section IV.A) and how
they affect the lifecycle of modules and components at run
time. When changes to a dependency occur, the impact on
dependents can be that of total state-loss for the dependent,
in the case of static  dependencies,  or simply rebinding to
another  service in the case of dynamic dependencies.  Our
architecture manager attempts to calculate this impact.  We
create  a  model  of  the  run  time  dependencies,  before
reconfigurations  are  applied.  We  then  perform  the
reconfiguration to the in-memory model in order to see the
effects beforehand. Reconfigurations are expressed at high
abstraction levels (e.g.,  the module level),  simplifying  the
task  of  deployment  and  configuration,  and  sent  to  the
architecture  manager.  (Our  method  does not  inhibit  using
low-level  reconfigurations,  e.g.,  individual  component
instances,  but we believe that higher abstractions simplify
platform  administration.)  For  example,  an  administrator
decides  to  update  a  module.  Our  architecture  manager
calculates  the  impact  on  dependencies  at  different  levels
across the application and according to dependency types,
and responds with a list of modules,  component types and
component instances that will be stopped, started, restarted
installed,  uninstalled,  changed  bindings,  state-loss,  and so
forth. In order to do this, our in memory model is actually a
dependency  graph,  where  nodes  are  component  instances
(nodes also reference their parent module). Edges between
nodes are colored and labeled in order to distinguish both
the dependency (label) and the dependency type (color). For
example,  the  label  of  a  service-dependency  specifies  the
service specification in question (e.g., printer-service), while
the color (e.g., red) specifies a dynamic dependency.

It is important that all dependencies be reified for them
to be evaluated. Resource dependencies, such as ports, are a
special case and may cause conflicts between components.
To complete the graph with these dependencies, a new node
is created to represent the resource (e.g., port 8080) and an
edge of the type of dependency (e.g., static + non-shareable)
is  created. The architecture  manager  verifies  the  edges  to
these nodes to avoid conflicts for static or non-shareable.

Regarding  impact,  for  each  reconfiguration  that  is
applied to the model, we take calculate the effect on existing
components  and modules.  There are two types of impact:
Dynamic, which affects component instances. If a dynamic
dependency  exists  to  a  component  that  changes,  the
dependent component will require a rebind to find another
suitable service (or wait for the same service to return). If no
suitable service is found, the component is stopped. In either
case, the impact is to rebind or stop, and it is made explicit.
An  impacted  component  may  affect  other  dependent
components, causing them to stop or rebind, and so on, in a
domino effect. Static dependencies affect both modules and
components,  because  components'  lifecycles  depend  on

those  of  modules'.  If  an  implementation  dependency
changes, all component instances of the dependent modules
are  destroyed  causing  state-loss.  This  affects  dependent
modules  and  components  and  the  effects  must  be
propagated. Basically,  all statically dependent modules are
restarted in a similar domino effect.

The total cost of a dynamic reconfiguration is the sum of
the affected modules,  the component  instances lost (state-
loss), the (re)creation of component  instances, the number
of re-bindings, the modules installed, the modules restarted
and the components and modules that do not start because
of  unsatisfied  dependencies.  If  non-functional  component
metadata  were  available,  the  manager  could  calculate  the
total  resources  used  in  a  dynamic  reconfiguration  (e.g.,
memory,  cpu,  disk)  by  adding  the  individual  resource
consumption for each reconfigured element. At the moment,
we are limited to the network consumption and disk space
usage, since the size of bundles is easily obtainable.

An additional element we have added is to automatically
satisfy  missing  dependencies,  in  order  to  minimize
downtime. In our case, any dependency that is calculated to
be  missing  in  the  application  after  a  proposed
reconfiguration,  is  satisfied  by  deploying  the  necessary
modules or, if possible, by binding to a distant service.

We have tested our tool on the JOnAS application server
which uses OSGi at its core [15]. With a common install of
around 150 bundles and a highly complicated dependency
graph centered around a number of crucial bundles, we note
that the impact of dynamic reconfigurations is costly.

VIII. RELATED WORK

Most  work  relating  to  dynamic  reconfiguration  in
centralized  software  has  focused  on  the  reconfiguration
mechanisms themselves, and is visible in component models
such  as  Fractal  [8],  Koala  [9]  and  OSGi  [13].  These
component  models tend to simplify reconfiguration thanks
to  mechanisms  introduced into  the component  membrane,
such as proxies that detect quiescent states (e.g., Fractal), or
the  use  of  specific  API,   development  models  and
architecture  approaches,  as  is  the  case  for  OSGi.  Other
work,  as presented by Oreizy and  Taylor  [16,17]  present
software adaptation and compare architectural styles for run
time adaptation, but focus on distributed applications and do
not look at component models or centralized mechanisms.
In our work, we provide an framework for the construction
of architecture managers and provide a specific architecture
manager  that  analyzes  the  impact  of  dynamic
reconfigurations  for  (mainly)  centralized,  service  oriented
component frameworks.

Related to OSGi we can mention P2 [18], an advanced
dependency  management  and  module  distribution  system
provided for the Eclipse Framework. This work focuses on
resolving constraints and dependencies, but does not focus
on the architecture administration  necessary on the platform
itself.  Further,  the  impact  of  these  deployments  is  not
calculated.  Other  work  that  is  similar  to  this  is  that  of
Touseau  [11,12]  which  seeks  to  limit  the  impact  of
reappearing services by means of SLA mechanisms. There
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is also work being done to ensure that metadata to describe
modules  and  components  is  correct  by  means  of  static
analysis [19]. We find this work to be necessary to ensure
dynamic  reconfigurations, although for the time being our
approach supposes metadata to always be correct.

Finally,  we  feel  our  work has  brought  us  close to  the
domain  of  autonomic  computing.  The general  purpose  of
Autonomic  Computing  is  to  enable  self-management  of
software systems and to minimize human intervention [21].
Our work is  similar  in this  aspect,  because we attempt to
increase  automation  of  architecture  management  by
providing a foundation framework from where to start. One
difference  is  we  focus  on  low-level  details,  such  as
implementation dependencies in service oriented component
frameworks,  and  not  on  high-level  strategies,  since  the
underlying  framework  for  implementing  those  strategies
does  not  exist  for  service  oriented  component  platforms.
Rainbow  [23]  is  a  similar  framework  conceptually;  but
focuses  on  distributed  systems.  Also,  the  work  done  in
CEYLON [22] is interesting in that they compose smaller,
simpler, reusable strategies, to obtain otherwise complicated
autonomic  managers.  Implementing  a  composing
mechanism  for  simple  architecture  managers  in  our
framework would certainly be interesting, but we have not
worked out how possible conflicts between managers would
need to be solved, nor if this is wise solution due to added
resource  consumption  and  complexity  of  the  manager.
Furthermore, we have not found comparable work regarding
our  use  case,  the  impact  of  dynamic  reconfigurations  in
these types of frameworks.

IX. CONCLUSION

In this paper we have proposed a generic framework for
the construction of architecture managers. We propose that
architecture  managers  should  be  simple,  optimized  for
specific  goals,  and  interchangeable.  (Different  problems
most likely require different solutions, even if the building
blocks  are  the  same.)  We  have  created  an  architecture
manager  capable  of  analyzing  the  impact  of  dynamic
reconfigurations,  before  or  after  they  take  place,  and  of
resolving  missing  dependencies  to  keep  the  application
running  as  “best  as  possible”.  We  have  also  specified
different types of dependencies that exist in modern service
oriented component models and how they affect otherwise
loosely coupled components at run time and why they need
to be properly considered in order to coherently manage an
application's architecture. Regarding our use case, we show
that it is necessary to have an understanding of the impact of
dynamic  reconfigurations  because  of  their  hidden  and
implicit cost, especially considering the domino effect that
takes place across the application. In the future, we plan on
using  our  current  framework  to  construct  an  architecture

administrator  capable  of  evaluating  the  correctness  of
dynamic  reconfigurations and which provides mechanisms
and strategies to minimize the impact to localized areas of
the  architecture  (e.g.,  temporary  service  substitution,
reconfiguration  at  off-peak  periods).  We will  continue  to
focus  our  work  on  highly  dynamic  environments,  where
consumers  and  providers  may  continually  appear  and
disappear without rapidly and without notice.
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