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Abstract— Increasingly, software is required to accommodate 
new features after the design and deployment stages. 
Applications are designed to improve their adaptability and 
flexibility. Software needs to evolve at runtime with minimal 
interruptions and, when possible, never stop running. Different 
motivations push software design to allow such evolution at 
runtime. For example, production systems with critical 
availability requirements need to be updated with little perceived 
execution interruption. This paper enumerates challenges in the 
construction of dynamic component-based applications that are 
capable of undergoing changes during execution, with minimal 
impact. 
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I.  INTRODUCTION 

Increasingly, software needs to accommodate new features 
after being already in use in production environments. It 
requires the ability to evolve at runtime with minimal 
interruptions because of a true need for providing non-stop 
systems, or simply for avoiding users to be annoyed by 
application restarts [23]. This requirement is especially true 
with high availability software, which needs to evolve at 
runtime with minimal interruptions and, when possible, never 
stop running. Depending on the frequency of updates, patches, 
changing business requirements, new features, and so forth, 
this can become a daunting task to handle.  

Some applications with critical availability requirements 
(the so-called critical systems [7]) need to be updated with little 
perceived execution interruption because application 
unavailability would lead to consequences such as loss of 
business, data, infrastructure, etc. These updates may be for 
different reasons such as changes on business requirements, 
new functionality added or even bug fixes. Non-critical 
applications may also present requirements for evolving 
software at runtime, like end-user applications such as Web 
browsers, office application suites and mobile applications that 
need to have the user experience improved with the possibility 
to easily add new functionality (i.e., plugins) without 
interrupting application usage. In domains such as ubiquitous 
computing [27], systems and applications must adapt to 
continuously changing contexts in an opportunistic manner. 
Devices, services, and connectivity may appear and disappear 
at anytime. In such highly dynamic scenarios, applications 
should be able to adapt their behavior autonomously, being 
ready to handle failures and unavailability, as well as the 

appearance of new services, performing the necessary 
configurations at runtime [8]. 

Resilience is a desired characteristic for such types of 
systems that need to evolve during runtime. It consists of 
maintaining system`s dependability, even when facing changes 
(e.g., reconfigurations, system updates). By structuring 
software into modular units with clearly defined roles and 
interfaces, we facilitate the construction of compatible 
implementations. A key factor for providing high availability is 
to modularize the system so modules can be the unit of failure 
and replacement [10]. By having well separated modules the 
application can give the impression of having instantaneous 
repair. By having a tiny mean time to repair (MTTR) the 
failure can be seen as a delay instead of a failure. 

Component-based Development [21] allows using such a 
modular approach. Replacing parts of an application comes 
down to choosing a compatible building block and integrating 
it. Initial approaches using components defined the architecture 
of the application at design-time and compile-time introducing 
tight coupling between components, making it difficult to 
replace them at runtime. Newer techniques have provided 
mechanisms for achieving this at runtime but still lack a level 
of flexibility that the component approach tends to inhibit. 
Although we can find many examples of components that 
allow dynamic reconfiguration [1][3][17][19][20][26], the 
challenges of dynamic updates remain the same for all of those 
approaches. A myriad of questions arises in the utilization of 
this approach in production systems. Some of the questions that 
we would like to be able to answer are: What is the impact of a 
dynamic update? How many components does it directly and 
indirectly affect? What happens to the components’ states? 
When should we update?  

In this paper we are particularly interested in the challenges 
around practical aspects of creating resilient component-based 
applications that can be unpredictably reconfigured. That is, 
those that remain dependable even after changes at runtime. 
Throughout the text we will use the general term dynamic 
reconfiguration to describe runtime changes to an application’s 
architecture, which may include performing a component 
update, changing a component binding, installing new 
components and so forth. 

The next sections of this paper are as follows: section II 
provides motivations and background, section III focuses on 
the challenges around dynamic updates and section IV draws 
some conclusions about the discussed issues. 
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II. MOTIVATIONS AND BACKGROUND 

Before delving into the challenges enumerated in this 
article, this section presents some motivations and background 
concerning dynamic component-based applications. 

A. High availability requirements 

Research reports [5][6] show that systems downtime and 
data recovery represent major revenue losses for organizations 
in Europe and in the United States (U.S.). In terms of 
availability measured by “nines”, in the year of 2009, 
unavailability in Europe represented 99% while in the U.S. 
99.9%. 

Either due to outages because of failures or because 
software had to go under maintenance (e.g., module updates, 
bug fixes), these numbers demonstrate the importance of 
keeping critical systems up and running without interruption as 
much as possible. Criticality can be of different types � 
safety-critical, business-critical, mission-critical or security-
critical � but in general, systems are considered as critical 
when failure or malfunction will lead to significant negative 
consequence [7]. The increasing complexity and ubiquity on 
software are transforming critical software into software that is 
designed to be easily changed, extended and reconfigured [11]. 

Runtime software evolution (RSE) is appropriate for such 
types of systems with high availability requirements. The 
principles behind RSE are of key importance when 
autonomous critical systems encounter errors during operation, 
as they must be capable of identifying, detecting, and 
recovering from errors, potentially without human assistance 
(error processing) [11]. Fault treatment and error processing are 
priority tasks in critical systems. Even though eventual 
operational errors that may be originated during application 
execution, the frameworks or applications that support RSE 
also carry potential problems that are inherent of the dynamic 
update process performed during runtime. 

B. Resilience and Runtime Software Evolution 

The term resilience [15] has been used in dependable 
computing as a synonym of fault tolerance.  However, in other 
fields like psychology, ecology or business administration the 
notion of resilience is related to the capacity of accommodating 
unforeseen changes. The definition given to resilience in the 
context of dependable computing is: 

 “The persistence of the avoidance of failures that are 
unacceptably frequent or severe, when facing 
changes.”   

Resilience can be seen a sort of scalable dependability, 
where the goal is continuous dependability when facing 
changes.  This need for resilience is a growing requirement of 
today’s applications that increasingly need to run non-stop. 
Eventually, applications need to be fixed to accommodate new 
features or introduce changes in their current behavior.  This 
ability to successfully accommodate changes is referred by 
Laprie [15] as the evolvability property of a system and it is 
crucial for systems that have to be resilient.  

Self-adaptive software is able to provide such desired 
evolvability, since it is a capable of modifying its own behavior 
when facing changes in its environment [16]. A system can be 
closed-adapted, where the predefined adaptive behavior is 
embedded in the system. In this case the system has a limited 
number of adaptations and does not allow new behaviors to be 
introduced at runtime. Systems that permit such runtime 
flexibility, where new adaptation plans can be added during 
execution are said to be open-adapted. Taylor [23] refers to 
runtime software evolution (RSE), as an alternative term to 
dynamic adaptation, which constitutes the ability of a software 
system’s functionality to be changed during runtime, without 
requiring a system reload or restart.  

The current trend of ubiquitous computing and critical 
applications with high availability requirements lead to ever 
changing scenarios where applications need to constantly 
adapt. Dependability is always necessary in such contexts, but 
upon eventual adaptations systems must ensure that they 
continue to be dependable. Therefore, resilience can be seen 
today as the ultimate objective of dependable applications that 
take adaptivity into account. 

C. Dependencies 

Two types of inter-component dependencies have been 
previously identified [13] for systems that allow loading 
components at runtime: prerequisites and dynamic 
dependencies. They would be equivalent to our definitions of 
static and dynamic dependencies, respectively. In addition, we 
specify a third level of dependency which we call resource 
dependency, which is not limited to inter-component 
dependencies since it may depend on things provided by the 
environment. 

Static dependencies exist when a reconfiguration requires 
restarting and reinitializing the module, causing its full state to 
be lost and all its components instances to be destroyed. 
Because the unit of deployment is a module, and at the module 
level is where implementation dependencies are handled, the 
module is clearly the granularity that is directly affected. State-
loss and instance destruction are required when a module 
imports implementation code from another, and the provider 
module changes. For example, if module A requires classes 
from module B, and B is updated, we must also update A to 
use the newer implementation of B. This type of dependency is 
common for datatypes specified in service specifications and 
for modules that provide libraries. Implementation 
dependencies are always mandatory for a module to operate 
correctly (i.e., they are prerequisites) and are costly because 
they cause the destruction of dependent modules’ component 
instances (which hold the application’s state) when changes are 
applied. 

Dynamic dependencies are those where a reconfiguration is 
possible without restarting the module and loosing state. These 
dependencies occur at the service level and benefit directly 
from the principles of service-oriented computing. Required 
services may be optional, degrading functionality of client 
components when not available. Dynamic dependencies affect 
the component instance and cause rebinding to a compatible 
service if a change occurs. If no compatible dependency is 
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found and the service is mandatory, then the component 
instance is stopped, and its provided services removed from the 
registry until its dependencies can be once again resolved. 

Resource dependencies, generally regard configuration, and 
can be either static or dynamic. For example, a communication 
port, according to how the component is implemented may be 
static, and require reinitialization of the module to change, or 
may be dynamic having the component internally handle the 
change. Also, a port may not be used by two components 
simultaenously, so declaring these dependencies helps avoid 
conflicts at runtime. Other examples include hardware devices 
and files. In general, these dependencies specify if the resource 
they require can be shared or not (e.g., a file might be read 
simultaneously) and if the dependency is static or dynamic. 
The effects at runtime are the same as for static dependencies if 
the resource is static and dynamic dependencies if the resource 
is dynamic. 

D. Dynamic Reconfigurations 

Dynamic reconfigurations may be costly and have a 
stronger impact than one might consider if only looking at 
service dependencies, even if using even following the 
principles of service-oriented computing that ensure loose 
coupling. When changes to a dependency occur, the impact on 
dependents can be that of total state-loss for the dependent, in 
the case of static dependencies, or simply rebinding to another 
service in the case of dynamic dependencies. Regarding 
impact, for each dynamic reconfiguration that is applied, we 
take note of what the impact will be on existing components 
and modules. There are two types of impact: 

Dynamic dependencies affect component instances. If a 
dynamic dependency exists on a component’s service that 
disappears, the dependent component will require a rebind to 
find another suitable service (or may wait for the same service 
in the case of an update). If no suitable service is found, the 
component is stopped. In either case, the impact is rebind or 
stop, and it is important it be made explicit. An impacted 
component may affect other dependent components, causing 
them to stop or rebind themselves, and so on, impacting others 
in a domino effect which may bring down the whole 
application. 

Static dependencies affect both modules and components, 
because components are provided by modules. If an 
implementation-dependency changes, all component instances 
of the dependent modules are destroyed causing state-loss. 
Since this affects dependent modules and components the 
effects are propagated across the system. All statically 
dependent modules are destroyed (leading to further state-loss), 
and components with service-dependencies are rebound or 
stopped. 

III. THE IMPACT OF DYNAMIC RECONFIGURATIONS 

When dealing with RSE, the typical units of replacement 
are components that are interconnected to form an application. 
Indeed, the possibility of dynamically performing updates on 
parts of the application while it is still running brings a lot of 
flexibility. Component-based software development and 
service-oriented computing offer replaceable building blocks 

for realizing the goal of runtime software evolution. These 
approaches can be employed in different techniques for 
constructing adaptive components and services for constructing 
flexible and evolvable applications. However, this flexibility 
comes at a cost since such dynamic reconfigurations have a 
significant impact in application execution. Different 
considerations concerning this dynamism have to be taken into 
account when developing software infrastructure and 
components targeting an approach where runtime software 
evolution is possible.  

Dynamic updates may be overlooked by others but there is 
a complex series of events that are involved with such 
mechanism. Despite different perspectives on component 
deployment lifecycle (e.g., install, start, install, update) 
[4][17][22], for the sake of simplicity we utilize a general and 
temporal perspective on the phases that are present in a 
lifecycle state transition. These phases consist on stages before, 
during and after a transition, which we will generally refer to as 
an update. The possibility of updates performed during 
application execution introduces a myriad of consequences, 
which are of different nature and impact for each of those 
stages, being a potential risk to application dependability. 
Some of these issues, grouped by the corresponding phase, are 
briefly discussed next. 

Before. As component-based applications are comprised by 
a set of components with interrelated dependencies, inter-
component dependency asks for a verification of the 
requirements (e.g. required hardware) � also called 
prerequisites � in order to check if a component can be 
installed in the runtime [13].  If a component is to be replaced, 
verification mechanisms should ensure type versioning 
consistency by not allowing type compatibility to be broken 
[2]. The fact of adding or removing components during 
application execution may change (or refresh) the set of 
interconnected dependencies. Therefore the system is lead to a 
reconfiguration that can impact other components in the 
application.  

During. An update should not avoid interruptions of on-
going operations that would be directly or indirectly related to 
such update. Some systems disregard such issue while others 
try to put constraints regarding updates. Maintaining 
component state is another issue when components are updated 
and their state needs to be preserved while its behavior is 
updated to a new version. A transactional update mechanism 
should ensure restoration of a previous component version in 
the case of unsuccessful updates, so the system is able to 
perform a rollback and restore component’s behavior and state 
as it was before the update. 

After. The process of a component update can be 
successful but after it takes place, there may be inconsistencies 
such as dangling objects left or executing tasks belonging to 
the component that were not properly terminated. Concerning 
the inter-component dependencies, the system at this stage 
must verify the dynamic dependencies among loaded 
components in a running system [13]. In some dynamic 
platforms, the fact of loading a component does not mean that 
it is ready to execute. Other issues are rather related with 
regular application execution, but may be directly affected after 
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the update of a component that eventually introduces faulty 
behavior. Fine-grained resource monitoring allows the 
application to keep monitoring component performance in 
order to identify which components are consuming resources 
(e.g., CPU, memory) more than expected. By identifying which 
component is responsible for that, corrective measures can be 
directly addressed to it. Besides excessive resource 
consumption, other errors (e.g. programming errors, non-
deterministic faults) may be caused by components updated at 
runtime. Fault containment mechanisms should prevent errors 
introduced by one component from being propagated to others. 
The continuous verification of non-functional attributes 
conformance can be seen as another issue to be considered 
after dynamic updates. In SOA they typically take the form of 
quality of service (QoS) attributes (e.g., performance, 
availability) represented in a service-level agreement (SLA). If 
the monitored QoS diverge from expected values the system 
should perform dynamic optimizations [18][9], which could 
also include the update or selection of other components or 
services. 

Among many questions that can be raised around this 
subject, there are two important issues that concern all of these 
phases of an update: the update cost and when to update. 

Update cost:  The total cost of a dynamic reconfiguration 
becomes a function of the impacted modules, the component 
instances destroyed (causing state loss), the (re)creation of 
component instances, the number of re-bindings, the modules 
installed, the modules restarted and the components and 
modules that do not start because of unsatisfied dependencies. 
If resource monitoring at the component level is available, we 
can calculate the total resources used in a dynamic 
reconfiguration (e.g., memory, CPU, disk) by using the 
individual resource consumption for each reconfigured element 
and adding them up. But for critical systems, we need to 
calculate the cost before the dynamic reconfiguration.  

When to update: It is difficult to define the appropriate 
moment to reconfigure. The update cost information could be 
combined with statistical information of application usage in 
order to perform “expensive” updates only at times when the 
system is not being used by (many) users, minimizing the 
perceived impact. For instance, Software rejuvenation [12] 
uses that approach for performing strategic resets on parts of 
the applications in order to reset application state so 
inconsistencies can be removed or avoided. As another 
example, the criteria of quiescence [14] and tranquility [25] are 
introduced as safe update states where the node (i.e., 
component) to be updated should not be engaged in 
transactions fired by the node itself or by nodes that may call it. 
This sort of safe update state may not be certain in 
environments where the application provider is not able to 
control all the components, such as in a service-oriented 
architecture. In such cases the system must cope with 
temporary unavailability [24] of services in case of updates. 

IV. CONCLUSIONS 

Currently, there are platforms that allow the construction of 
dynamic applications albeit in limited ways, being aware that 
runtime updates may bring inconsistency to software. 

Spontaneous system reconfigurations, which can typically take 
place in ubiquitous and other highly dynamic environments, 
can be hard to support if the difficulties we have mentioned are 
not taken into account. Regarding production systems where 
the risk of failure must be minimal, updates still require a 
controlled and predictable environment, where testing and 
validation has been thorough. 

Component-based development helps us tackle the 
complexity of applications and provides us with smaller units 
of functionality that can be individually replaced. However, 
even if some component frameworks provide the ability to 
replace small parts of the application during runtime, in 
general, highly dynamic applications are still difficult to 
construct and handle, even in the most advanced frameworks.  

One must often be on the defensive when developing 
components in order to avoid misbehavior especially when 
many component dependencies are involved. There are also 
few guarantees that an application can adapt and still correctly 
execute or that the dependencies will be available for a 
component to be enabled. Many issues regarding dynamic 
applications remain. To mention a few, it is hard to know what 
the impact of an update on an application will be because the 
side-effects are not known and the information needed is 
implicit or non-existent. Updates and reconfigurations still lack 
many features such as being atomic or transactional in order to 
ensure they are applied entirely or not at all, which is crucial 
when ensuring an application’s correctness. Another issue 
concerns state transfer, which comes down to how to update a 
component and have it to continue where the old version left 
off. 

We can write applications that introduce and tolerate 
dynamic behavior, meaning the applications internal structure 
can adapt, but the fact is that even with the most advanced 
technologies available, there are limits. These limits include the 
collateral impact of an update, which can bring down the whole 
application, or the fact that we still lack models for handling 
“sparkling architectures”, where components or services 
disappear intermittently, even frequently, as is the case in 
pervasive and ubiquitous environments, as well as applications 
with high availability requirements. 
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