
Resilience in dynamic component-based applications

Kiev Gama
Recife Center for Advanced Studies (C.E.S.A.R)

Recife, Brazil
kiev.gama@cesar.org.br

Walter Rudametkin, Didier Donsez
Université de Grenoble

Laboratoire d’Informatique de Grenoble
Grenoble, France

{firstname}.{lastname}@imag.fr

Abstract— Increasingly, software is required to accommodate
new features after the design and deployment stages.
Applications are designed to improve their adaptability and
flexibility. Software needs to evolve at runtime with minimal
interruptions and, when possible, never stop running. Different
motivations push software design to allow such evolution at
runtime. For example, production systems with critical
availability requirements need to be updated with little perceived
execution interruption. This paper enumerates challenges in the
construction of dynamic component-based applications that are
capable of undergoing changes during execution, with minimal
impact.

Keywords: Component-based development, Dynamic
reconfiguration, runtime software evolution

I. INTRODUCTION

Increasingly, software needs to accommodate new features
after being already in use in production environments. It
requires the ability to evolve at runtime with minimal
interruptions because of a true need for providing non-stop
systems, or simply for avoiding users to be annoyed by
application restarts [23]. This requirement is especially true
with high availability software, which needs to evolve at
runtime with minimal interruptions and, when possible, never
stop running. Depending on the frequency of updates, patches,
changing business requirements, new features, and so forth,
this can become a daunting task to handle.

Some applications with critical availability requirements
(the so-called critical systems [7]) need to be updated with little
perceived execution interruption because application
unavailability would lead to consequences such as loss of
business, data, infrastructure, etc. These updates may be for
different reasons such as changes on business requirements,
new functionality added or even bug fixes. Non-critical
applications may also present requirements for evolving
software at runtime, like end-user applications such as Web
browsers, office application suites and mobile applications that
need to have the user experience improved with the possibility
to easily add new functionality (i.e., plugins) without
interrupting application usage. In domains such as ubiquitous
computing [27], systems and applications must adapt to
continuously changing contexts in an opportunistic manner.
Devices, services, and connectivity may appear and disappear
at anytime. In such highly dynamic scenarios, applications
should be able to adapt their behavior autonomously, being
ready to handle failures and unavailability, as well as the

appearance of new services, performing the necessary
configurations at runtime [8].

Resilience is a desired characteristic for such types of
systems that need to evolve during runtime. It consists of
maintaining system`s dependability, even when facing changes
(e.g., reconfigurations, system updates). By structuring
software into modular units with clearly defined roles and
interfaces, we facilitate the construction of compatible
implementations. A key factor for providing high availability is
to modularize the system so modules can be the unit of failure
and replacement [10]. By having well separated modules the
application can give the impression of having instantaneous
repair. By having a tiny mean time to repair (MTTR) the
failure can be seen as a delay instead of a failure.

Component-based Development [21] allows using such a
modular approach. Replacing parts of an application comes
down to choosing a compatible building block and integrating
it. Initial approaches using components defined the architecture
of the application at design-time and compile-time introducing
tight coupling between components, making it difficult to
replace them at runtime. Newer techniques have provided
mechanisms for achieving this at runtime but still lack a level
of flexibility that the component approach tends to inhibit.
Although we can find many examples of components that
allow dynamic reconfiguration [1][3][17][19][20][26], the
challenges of dynamic updates remain the same for all of those
approaches. A myriad of questions arises in the utilization of
this approach in production systems. Some of the questions that
we would like to be able to answer are: What is the impact of a
dynamic update? How many components does it directly and
indirectly affect? What happens to the components’ states?
When should we update?

In this paper we are particularly interested in the challenges
around practical aspects of creating resilient component-based
applications that can be unpredictably reconfigured. That is,
those that remain dependable even after changes at runtime.
Throughout the text we will use the general term dynamic
reconfiguration to describe runtime changes to an application’s
architecture, which may include performing a component
update, changing a component binding, installing new
components and so forth.

The next sections of this paper are as follows: section II
provides motivations and background, section III focuses on
the challenges around dynamic updates and section IV draws
some conclusions about the discussed issues.

2012 Brazilian Symposium on Software Engineering

978-0-7695-4868-5/12 $26.00 © 2012 IEEE

DOI 10.1109/SBES.2012.32

191

II. MOTIVATIONS AND BACKGROUND

Before delving into the challenges enumerated in this
article, this section presents some motivations and background
concerning dynamic component-based applications.

A. High availability requirements

Research reports [5][6] show that systems downtime and
data recovery represent major revenue losses for organizations
in Europe and in the United States (U.S.). In terms of
availability measured by “nines”, in the year of 2009,
unavailability in Europe represented 99% while in the U.S.
99.9%.

Either due to outages because of failures or because
software had to go under maintenance (e.g., module updates,
bug fixes), these numbers demonstrate the importance of
keeping critical systems up and running without interruption as
much as possible. Criticality can be of different types �
safety-critical, business-critical, mission-critical or security-
critical � but in general, systems are considered as critical
when failure or malfunction will lead to significant negative
consequence [7]. The increasing complexity and ubiquity on
software are transforming critical software into software that is
designed to be easily changed, extended and reconfigured [11].

Runtime software evolution (RSE) is appropriate for such
types of systems with high availability requirements. The
principles behind RSE are of key importance when
autonomous critical systems encounter errors during operation,
as they must be capable of identifying, detecting, and
recovering from errors, potentially without human assistance
(error processing) [11]. Fault treatment and error processing are
priority tasks in critical systems. Even though eventual
operational errors that may be originated during application
execution, the frameworks or applications that support RSE
also carry potential problems that are inherent of the dynamic
update process performed during runtime.

B. Resilience and Runtime Software Evolution

The term resilience [15] has been used in dependable
computing as a synonym of fault tolerance. However, in other
fields like psychology, ecology or business administration the
notion of resilience is related to the capacity of accommodating
unforeseen changes. The definition given to resilience in the
context of dependable computing is:

 “The persistence of the avoidance of failures that are
unacceptably frequent or severe, when facing
changes.”

Resilience can be seen a sort of scalable dependability,
where the goal is continuous dependability when facing
changes. This need for resilience is a growing requirement of
today’s applications that increasingly need to run non-stop.
Eventually, applications need to be fixed to accommodate new
features or introduce changes in their current behavior. This
ability to successfully accommodate changes is referred by
Laprie [15] as the evolvability property of a system and it is
crucial for systems that have to be resilient.

Self-adaptive software is able to provide such desired
evolvability, since it is a capable of modifying its own behavior
when facing changes in its environment [16]. A system can be
closed-adapted, where the predefined adaptive behavior is
embedded in the system. In this case the system has a limited
number of adaptations and does not allow new behaviors to be
introduced at runtime. Systems that permit such runtime
flexibility, where new adaptation plans can be added during
execution are said to be open-adapted. Taylor [23] refers to
runtime software evolution (RSE), as an alternative term to
dynamic adaptation, which constitutes the ability of a software
system’s functionality to be changed during runtime, without
requiring a system reload or restart.

The current trend of ubiquitous computing and critical
applications with high availability requirements lead to ever
changing scenarios where applications need to constantly
adapt. Dependability is always necessary in such contexts, but
upon eventual adaptations systems must ensure that they
continue to be dependable. Therefore, resilience can be seen
today as the ultimate objective of dependable applications that
take adaptivity into account.

C. Dependencies

Two types of inter-component dependencies have been
previously identified [13] for systems that allow loading
components at runtime: prerequisites and dynamic
dependencies. They would be equivalent to our definitions of
static and dynamic dependencies, respectively. In addition, we
specify a third level of dependency which we call resource
dependency, which is not limited to inter-component
dependencies since it may depend on things provided by the
environment.

Static dependencies exist when a reconfiguration requires
restarting and reinitializing the module, causing its full state to
be lost and all its components instances to be destroyed.
Because the unit of deployment is a module, and at the module
level is where implementation dependencies are handled, the
module is clearly the granularity that is directly affected. State-
loss and instance destruction are required when a module
imports implementation code from another, and the provider
module changes. For example, if module A requires classes
from module B, and B is updated, we must also update A to
use the newer implementation of B. This type of dependency is
common for datatypes specified in service specifications and
for modules that provide libraries. Implementation
dependencies are always mandatory for a module to operate
correctly (i.e., they are prerequisites) and are costly because
they cause the destruction of dependent modules’ component
instances (which hold the application’s state) when changes are
applied.

Dynamic dependencies are those where a reconfiguration is
possible without restarting the module and loosing state. These
dependencies occur at the service level and benefit directly
from the principles of service-oriented computing. Required
services may be optional, degrading functionality of client
components when not available. Dynamic dependencies affect
the component instance and cause rebinding to a compatible
service if a change occurs. If no compatible dependency is

192

found and the service is mandatory, then the component
instance is stopped, and its provided services removed from the
registry until its dependencies can be once again resolved.

Resource dependencies, generally regard configuration, and
can be either static or dynamic. For example, a communication
port, according to how the component is implemented may be
static, and require reinitialization of the module to change, or
may be dynamic having the component internally handle the
change. Also, a port may not be used by two components
simultaenously, so declaring these dependencies helps avoid
conflicts at runtime. Other examples include hardware devices
and files. In general, these dependencies specify if the resource
they require can be shared or not (e.g., a file might be read
simultaneously) and if the dependency is static or dynamic.
The effects at runtime are the same as for static dependencies if
the resource is static and dynamic dependencies if the resource
is dynamic.

D. Dynamic Reconfigurations

Dynamic reconfigurations may be costly and have a
stronger impact than one might consider if only looking at
service dependencies, even if using even following the
principles of service-oriented computing that ensure loose
coupling. When changes to a dependency occur, the impact on
dependents can be that of total state-loss for the dependent, in
the case of static dependencies, or simply rebinding to another
service in the case of dynamic dependencies. Regarding
impact, for each dynamic reconfiguration that is applied, we
take note of what the impact will be on existing components
and modules. There are two types of impact:

Dynamic dependencies affect component instances. If a
dynamic dependency exists on a component’s service that
disappears, the dependent component will require a rebind to
find another suitable service (or may wait for the same service
in the case of an update). If no suitable service is found, the
component is stopped. In either case, the impact is rebind or
stop, and it is important it be made explicit. An impacted
component may affect other dependent components, causing
them to stop or rebind themselves, and so on, impacting others
in a domino effect which may bring down the whole
application.

Static dependencies affect both modules and components,
because components are provided by modules. If an
implementation-dependency changes, all component instances
of the dependent modules are destroyed causing state-loss.
Since this affects dependent modules and components the
effects are propagated across the system. All statically
dependent modules are destroyed (leading to further state-loss),
and components with service-dependencies are rebound or
stopped.

III. THE IMPACT OF DYNAMIC RECONFIGURATIONS

When dealing with RSE, the typical units of replacement
are components that are interconnected to form an application.
Indeed, the possibility of dynamically performing updates on
parts of the application while it is still running brings a lot of
flexibility. Component-based software development and
service-oriented computing offer replaceable building blocks

for realizing the goal of runtime software evolution. These
approaches can be employed in different techniques for
constructing adaptive components and services for constructing
flexible and evolvable applications. However, this flexibility
comes at a cost since such dynamic reconfigurations have a
significant impact in application execution. Different
considerations concerning this dynamism have to be taken into
account when developing software infrastructure and
components targeting an approach where runtime software
evolution is possible.

Dynamic updates may be overlooked by others but there is
a complex series of events that are involved with such
mechanism. Despite different perspectives on component
deployment lifecycle (e.g., install, start, install, update)
[4][17][22], for the sake of simplicity we utilize a general and
temporal perspective on the phases that are present in a
lifecycle state transition. These phases consist on stages before,
during and after a transition, which we will generally refer to as
an update. The possibility of updates performed during
application execution introduces a myriad of consequences,
which are of different nature and impact for each of those
stages, being a potential risk to application dependability.
Some of these issues, grouped by the corresponding phase, are
briefly discussed next.

Before. As component-based applications are comprised by
a set of components with interrelated dependencies, inter-
component dependency asks for a verification of the
requirements (e.g. required hardware) � also called
prerequisites � in order to check if a component can be
installed in the runtime [13]. If a component is to be replaced,
verification mechanisms should ensure type versioning
consistency by not allowing type compatibility to be broken
[2]. The fact of adding or removing components during
application execution may change (or refresh) the set of
interconnected dependencies. Therefore the system is lead to a
reconfiguration that can impact other components in the
application.

During. An update should not avoid interruptions of on-
going operations that would be directly or indirectly related to
such update. Some systems disregard such issue while others
try to put constraints regarding updates. Maintaining
component state is another issue when components are updated
and their state needs to be preserved while its behavior is
updated to a new version. A transactional update mechanism
should ensure restoration of a previous component version in
the case of unsuccessful updates, so the system is able to
perform a rollback and restore component’s behavior and state
as it was before the update.

After. The process of a component update can be
successful but after it takes place, there may be inconsistencies
such as dangling objects left or executing tasks belonging to
the component that were not properly terminated. Concerning
the inter-component dependencies, the system at this stage
must verify the dynamic dependencies among loaded
components in a running system [13]. In some dynamic
platforms, the fact of loading a component does not mean that
it is ready to execute. Other issues are rather related with
regular application execution, but may be directly affected after

193

the update of a component that eventually introduces faulty
behavior. Fine-grained resource monitoring allows the
application to keep monitoring component performance in
order to identify which components are consuming resources
(e.g., CPU, memory) more than expected. By identifying which
component is responsible for that, corrective measures can be
directly addressed to it. Besides excessive resource
consumption, other errors (e.g. programming errors, non-
deterministic faults) may be caused by components updated at
runtime. Fault containment mechanisms should prevent errors
introduced by one component from being propagated to others.
The continuous verification of non-functional attributes
conformance can be seen as another issue to be considered
after dynamic updates. In SOA they typically take the form of
quality of service (QoS) attributes (e.g., performance,
availability) represented in a service-level agreement (SLA). If
the monitored QoS diverge from expected values the system
should perform dynamic optimizations [18][9], which could
also include the update or selection of other components or
services.

Among many questions that can be raised around this
subject, there are two important issues that concern all of these
phases of an update: the update cost and when to update.

Update cost: The total cost of a dynamic reconfiguration
becomes a function of the impacted modules, the component
instances destroyed (causing state loss), the (re)creation of
component instances, the number of re-bindings, the modules
installed, the modules restarted and the components and
modules that do not start because of unsatisfied dependencies.
If resource monitoring at the component level is available, we
can calculate the total resources used in a dynamic
reconfiguration (e.g., memory, CPU, disk) by using the
individual resource consumption for each reconfigured element
and adding them up. But for critical systems, we need to
calculate the cost before the dynamic reconfiguration.

When to update: It is difficult to define the appropriate
moment to reconfigure. The update cost information could be
combined with statistical information of application usage in
order to perform “expensive” updates only at times when the
system is not being used by (many) users, minimizing the
perceived impact. For instance, Software rejuvenation [12]
uses that approach for performing strategic resets on parts of
the applications in order to reset application state so
inconsistencies can be removed or avoided. As another
example, the criteria of quiescence [14] and tranquility [25] are
introduced as safe update states where the node (i.e.,
component) to be updated should not be engaged in
transactions fired by the node itself or by nodes that may call it.
This sort of safe update state may not be certain in
environments where the application provider is not able to
control all the components, such as in a service-oriented
architecture. In such cases the system must cope with
temporary unavailability [24] of services in case of updates.

IV. CONCLUSIONS

Currently, there are platforms that allow the construction of
dynamic applications albeit in limited ways, being aware that
runtime updates may bring inconsistency to software.

Spontaneous system reconfigurations, which can typically take
place in ubiquitous and other highly dynamic environments,
can be hard to support if the difficulties we have mentioned are
not taken into account. Regarding production systems where
the risk of failure must be minimal, updates still require a
controlled and predictable environment, where testing and
validation has been thorough.

Component-based development helps us tackle the
complexity of applications and provides us with smaller units
of functionality that can be individually replaced. However,
even if some component frameworks provide the ability to
replace small parts of the application during runtime, in
general, highly dynamic applications are still difficult to
construct and handle, even in the most advanced frameworks.

One must often be on the defensive when developing
components in order to avoid misbehavior especially when
many component dependencies are involved. There are also
few guarantees that an application can adapt and still correctly
execute or that the dependencies will be available for a
component to be enabled. Many issues regarding dynamic
applications remain. To mention a few, it is hard to know what
the impact of an update on an application will be because the
side-effects are not known and the information needed is
implicit or non-existent. Updates and reconfigurations still lack
many features such as being atomic or transactional in order to
ensure they are applied entirely or not at all, which is crucial
when ensuring an application’s correctness. Another issue
concerns state transfer, which comes down to how to update a
component and have it to continue where the old version left
off.

We can write applications that introduce and tolerate
dynamic behavior, meaning the applications internal structure
can adapt, but the fact is that even with the most advanced
technologies available, there are limits. These limits include the
collateral impact of an update, which can bring down the whole
application, or the fact that we still lack models for handling
“sparkling architectures”, where components or services
disappear intermittently, even frequently, as is the case in
pervasive and ubiquitous environments, as well as applications
with high availability requirements.

REFERENCES
[1] T. Batista and N. Rodriguez. Dynamic Reconfiguration of Component-

Based Applications. In Proceedings of the International Symposium on
Software Engineering for Parallel and Distributed Systems, pages 32–
39. IEEE Computer Society, June 2000

[2] P. Brada and L. Valenta. “Practical Verification of Component
Substitutability Using Subtype Relation. In Proceedings of the 32nd
EUROMICRO Conference on Softwar”e Engineering and Advanced
Applications (EUROMICRO '06). IEEE Computer Society, Washington,
DC, USA, 38-45

[3] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma , J.B. Stefani. “The
FRACTAL component model and its support in Java”, SPE, v.36 n.11-
12, p.1257-1284, September 2006

[4] A. Carzaniga, A. Fuggetta, R. S. Hall, A. van der Hoek, D. Heimbigner,
A. L. Wolf. “A Characterization Framework for Software Deployment
Technologies,” Technical Report CU-CS-857-98, Dept. of Computer
Science, University of Colorado, April 1998

[5] CA Technologies. The Avoidable Cost of Downtime . Research Report,
September 2010. http://www.ca.com

194

[6] CA Technologies. The Avoidable Cost of Downtime . Research Report,
November 2010. http://www.ca.com

[7] L. Coyle, M. Hinchey, B. Nuseibeh , and J.L. Fiadeiro. “Guest Editors'
Introduction: Evolving Critical Systems”. In Proceedings of IEEE
Computer. 2010, 28-33.

[8] E. Di Nitto, C. Ghezzi, A. Metzger, M. Papazoglou & K. Pohl. “A
journey to highly dynamic, self-adaptive service-based applications.
Automated Software Engineering, 15:313-341

[9] V. Grassi, R. Mirandola, and A. Sabetta. “A model-driven approach to
performability analysis of dynamically reconfigurable component-based
systems”. In Proceedings of the 6th international workshop on Software
and performance (WOSP '07). ACM, New York, NY, USA, 103-114.��

[10] �������	�
���
����
���������� ��� ������������ ��� ����������� �� ������ ��� ���������
�������	�!"#$	�����%&!'��

[11] M. Hinchey, L. Coyle. “Evolving Critical Systems”. Lero Technical
Report Lero-TR-2009-00. http://www.lero.ie/sites/default/files/Lero-TR-
2009-00-20090727.pdf

[12] N. Kolettis and N.D. Fulton. “Software Rejuvenation: Analysis, Module
and Applications”. In Proceedings of the Twenty-Fifth international
Symposium on Fault-Tolerant Computing (June 27 - 30, 1995). FTCS.
IEEE Computer Society, Washington, DC, 381.

[13] F. Kon and R. H. Campbell. “Dependence Management in Component-
Based Distributed Systems”. IEEE Concurrency 8, 1, 26--36 (2000)

[14] J. Kramer and J. Magee. “The Evolving Philosophers Problem:Dynamic
Change Management,” IEEE Trans. Software Eng., vol. 16, no. 11, pp.
1293-1306, Nov. 1990.

[15] J.C. Laprie. “From dependability to resilience”. In 38th IEEE/IFIP Int.
Conf. On Dependable Systems and Networks, 2008�

[16] P. Oreizy, M.M. Gorlick, R.N. Taylor, D. Heimbigner, G. Johnson, N.
Medvidovic, A. Quilici, D.S. Rosenblum, A.L. Wolf. “An Architecture-
Based Approach to Self-Adaptive Software”. IEEE Intelligent Systems
14, 3 (May 1999), 54-62�

[17] OSGi Alliance. OSGi Service Platform. http://www.osgi.org

[18] M.P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann. “Service-
oriented Computing: State of the art and research challenges”. IEEE
Computer, 11, 2007.

[19] F. Plasil, D. Balek, R. Janecek: SOFA/DCUP: architecture for
component trading and dynamic updating. In: 4th Intl. Conf. on
Configurable Distributed Systems, pp.43--51 (1998)

[20] M.J. Rutherford, K. Anderson, A. Carzaniga, D. Heimbigner, and A.L.
Wolf. “Reconfiguration in the Enterprise JavaBean Component Model”
In Proceedings of the IFIP/ACM Working Conference on Component
Deployment, Berlin, 2002, pp. 67-81

[21] C. Szyperski. “Component Software: Beyond Object-Oriented
Programming”, Addison-Wesley Longman Publishing Co., Inc., 2002

[22] C. Szyperski. “Component technology: what, where, and how?”. In
Proceedings of the 25th International Conference on Software
Engineering (ICSE '03). IEEE Computer Society, Washington, DC,
USA, 684-693.

[23] R. N. Taylor, N. Medvidovic, P. Oreizy. “Architectural styles for
runtime software adaptation”. In 3rd European Conference on Software
Architecture (ECSA) (September 2009), pp. 171-180

[24] L. Touseau, D. Donsez, and W. Rudametkin. “Towards a SLA-based
Approach to Handle Service Disruptions”. In Proceedings of the 2008
IEEE International Conference on Services Computing - Volume 1
(SCC '08), Vol. 1. IEEE Computer Society, Washington, DC, USA, 415-
422.

[25] Y. Vandewoude, P. Ebraert, Y. Berbers, and T. D'Hondt. “Tranquility: A
Low Disruptive Alternative to Quiescence for Ensuring Safe Dynamic
Updates”. IEEE Trans. Softw. Eng. 33, 12 (December 2007), 856-868

[26] R. Van Ommering, et al.: “The Koala component model for consumer
electronics software,” Computer, vol. 33, no. 3, 2000, pp. 78-85.

[27] M. Weiser. The computer for the 21st century. Scientific American
(September 1991).

195

