
Université Joseph Fourier — Master 2 Recherche – Systèmes et Logiciels

Dynamic instrumentation for application management and
application analysis in component­based applications

Project by :

Walter RUDAMETKIN

Presented :

September 6, 2007

SARDES Project

INRIA Rhône Alpes – Laboratoire d'Informatique de Grenoble

Tutors :

Renaud LACHAIZE

Vivien QUÉMA

JURY :

Jean­Claude FERNANDEZ Permanent member of the Jury

Jérôme EUZENAT Permanent member of the Jury

Jean­Marc VINCENT Permanent member of the Jury

Phillipe GUILLAUME External examiner (STMicroelectronics)

Renaud LACHAIZE Tutor

Vivien QUÉMA Tutor

Abstract

Applications are becoming more and more complex. Tools that provide support for
both, application analysis (e.g., profiling, workload analysis, software tracing) and
application management, which are applications used to administer and control
other applications (e.g., meta-applications, interposition tools, context propagation),
are essential for modern applications. These two subjects, analysis and
management, have traditionally been considered separate, but they rely on the
same basis: application instrumentation. We unify application management and
application analysis by providing fine-grained, dynamic instrumentation for
component-based applications. Component models provide a well defined
architecture, introspection and reconfiguration capabilities, that we utilize for
instrumenting the application. We propose Requests as the base granularity for
instrumentation. Moreover, we have proposed a novel application management
infrastructure (i.e., meta-application infrastructure) that uses requests as its base
granularity and provides two novel types of metadata, request contexts and
message contexts. The infrastructure has been developed using the Fractal
Component Model, and implemented in its reference implementation, Julia.

Keywords: application analysis, application management, meta-applications,
context propagation, request, request tracking, profiling, workload analysis,
component-based applications.

Résumé

Les applications modernes deviennent de plus en plus complexes. Des
outils ont été développés pour les analyser (traçage de ressources,
caractérisation de charge, ...) et les administrer (construction de
méta-applications, propagation de contextes, ...). Ces outils ont
jusqu'à présent été considérés indépendant et ne partagent ainsi pas de
briques de base communes. Néanmoins, il apparaît que ces deux types
d'outils nécessitent l'utilisation de techniques d'instrumentation. Dans
le travail présenté dans ce rapport, nous avons étudié la possibilité
d'unifier les outils d'analyse et d'administration d'applications. Pour
ce faire, nous proposons d'utiliser comme base de ces outils une
technique d'instrumentation dynamique à grain fin. Cette technique
fonctionne sur les applications développées à l'aide de modèles de
composants. L'intérêt d'utiliser de tels modèles est qu'ils fournissent
des moyens pour introspecter et reconfigurer dynamiquement les
applications, ce qui est une aide au développement de techniques
d'instrumentation. Nous présentons également, dans ce rapport, une
infrastructure d'administration reposant sur les techniques
d'instrumentation précédemment citées. L'administration se fait à la
granularité de la requête (de façon similaire à ce qui est fait dans les
serveurs Web). Cette infrastructure a été développée à l'aide du modèle
de composants Fractal.

Mots clés: analyse d'applications, administration d'applications,
méta-applications, propagation de contexte, requêtes, traçage de
requêtes, caractérisation de charge, applications à base de composants.

Table of Contents
Chapter I ­ 1 ­

1 Introduction ­ 1 ­
Chapter II ­ 3 ­

2 State of the Art ­ 3 ­
2.1 Overview ­ 3 ­
2.2 Application Analysis ­ 4 ­

2.2.1 Overview ­ 4 ­
2.2.2 Software Tracing (DTrace) ­ 4 ­
2.2.3 Dynamic Translation ­ 8 ­
2.2.4 Workload Analysis ­ 8 ­
2.2.5 Statistical workload analysis (Project 5) ­ 9 ­
2.2.6 Deterministic workload analysis (Magpie) ­ 11 ­

2.3 Application Management ­ 13 ­
2.3.1 Overview ­ 13 ­
2.3.2 Meta­applications and Metadata propagation ­ 13 ­
2.3.3 Causeway ­ 14 ­
2.3.4 Annotation Toolkits ­ 17 ­

2.4 Summary of the State of the art ­ 19 ­
2.4.1 Project summaries ­ 19 ­

2.5 Remaining issues ­ 22 ­
Chapter III ­ 25 ­

3 Details of the Contribution ­ 25 ­
3.1 Overview ­ 25 ­
3.2 Synchronous interaction ­ 27 ­
3.3 Asynchronous interaction ­ 29 ­

3.3.1 Overview ­ 29 ­
3.3.2 Defining annotations ­ 31 ­
3.3.3 Proposed annotations ­ 32 ­

3.4 Request tracking ­ 37 ­
3.4.1 Overview ­ 37 ­
3.4.2 Request execution paths ­ 38 ­
3.4.3 Modifying request tracking granularity ­ 39 ­
3.4.4 Request consumer mechanism ­ 39 ­

­ i ­

3.5 Context propagation ­ 40 ­
3.5.1 Overview ­ 40 ­
3.5.2 Metadata key­value pairs ­ 40 ­
3.5.3 Request context (global context) ­ 41 ­
3.5.4 Message context (local context) ­ 42 ­
3.5.5 Handling multiple contexts ­ 42 ­

3.6 Callback infrastructure ­ 44 ­
3.6.1 Overview ­ 44 ­
3.6.2 Callback components ­ 45 ­
3.6.3 Defining callback interaction points ­ 45 ­

3.7 Profiling ­ 46 ­
3.8 Comparison to other projects ­ 46 ­

3.8.1 Comparison with DTrace ­ 46 ­
3.8.2 Comparison with Project5 ­ 47 ­
3.8.3 Comparison with Magpie ­ 47 ­
3.8.4 Comparison with Causeway ­ 48 ­
3.8.5 Comparison with Defensive Programming ­ 48 ­
3.8.6 Comparison with A Posteriori Defensive Programming ­ 49 ­

3.9 Summary ­ 49 ­
Chapter IV ­ 51 ­

4 Implementation ­ 51 ­
4.1 Overview ­ 51 ­
4.2 Implementation Context ­ 52 ­

4.2.1 Fractal Component Model ­ 52 ­
4.2.2 Julia, implementation of the Fractal Component Model ­ 54 ­
4.2.3 FScript for Safe Dynamic Reconfigurations ­ 55 ­
4.2.4 FScript Reconfigurations ­ 56 ­

4.3 Application management infrastructure ­ 57 ­
4.3.1 Trace Manager ­ 58 ­
4.3.2 Request Tracker ­ 58 ­
4.3.3 Callback Manager ­ 59 ­
4.3.4 Meta­application Administrator ­ 60 ­
4.3.5 Current state and remaining work ­ 61 ­

Chapter V ­ 63 ­
5 Conclusion ­ 63 ­

Bibliography ­ 65 ­

­ ii ­

Figure Index
Figure 1: Abstract view of Magpie..12
Figure 2: Causeway metadata concept..15
Figure 3: Meta­application overview. ..27
Figure 4: Dynamic tracers to instrument the application..28
Figure 5: Hidden component functionality..30
Figure 6: Annotation toolkit..31
Figure 7: Thread pool/Thread creator...34
Figure 8: Abstraction of message queues..35
Figure 9: Multiple processes access data stream...36
Figure 10: Request execution path..38
Figure 11: Request context..41
Figure 12: Message context...42
Figure 13: Multiple contexts. ..43
Figure 14: Conceptual view of the implementation..52
Figure 15: External view of a Fractal component...53
Figure 16: Internal view of a Fractal component..53
Figure 17: Advantages of shared components...54
Figure 18: Meta­application infrastructure..57

­ iii ­

C h a p t e r C h a p t e r II

1 Introduction
Modern applications are becoming more and more complicated and are commonly composed of

hundreds of thousands of lines of code or are even in the millions of lines of code. This poses
numerous challenges. Among them, we are interested in two, analyzing applications and managing
them. Application analysis are the techniques used to study an application – its internal behavior,
its external interactions, etc. It consists of a series of techniques like profiling, performance
debugging, and workload analysis. Application management has different objectives. It attempts
to separate the functionality of the application from how the internal software components interact
and are used, by providing a means of controlling and administering the application. It rests on
techniques like context propagation, meta-applications and interposition.

Application analysis and application management are currently considered separate.
Consequently, existing solutions for application analysis and application management have created
diversification in the way a developer understands the application and the way he actually
interacts with it. More precisely, developers and application designers are forced to bridge the
conceptual gaps between the different application analysis tools and application management tools
because their relationships are not explicit nor clear. This comes from the fact that these tools do
not share common base-concepts. This is particularly true for application instrumentation
techniques, that are at the heart of both analysis and management tools. Instrumentation
techniques used for application analysis are fine grain and do not only focus on inducing low-
overhead, but also on becoming runtime dynamic. On the other hand, instrumentation techniques
used for application management have focused on supporting legacy applications and are,
consequently, coarse grain. Moreover, instrumentation is static, due to the fact that the application
source code is not supposed to be available. Consequently, instrumentation for managing
applications requires the modification of the context in which applications execute in order to
intercept inter-application calls, operating system calls, and library calls. This large granularity of
interaction between the application and the management tools have limited their use.

In the work presented in this report, we have studied the unification of the analysis and
management functions. Our goal is to build an application management infrastructure that benefits
from the techniques developed in application analysis environments. To that end, we, first of all
propose a unification of the underlying application instrumentation technique. Instrumentation
must provide a granularity that is useful to analysis and management tools alike. This means that
application instrumentation must be fine-grained and provide interaction points in the application,
where a developer needs and expects them. Unified instrumentation is the first step, but it is not
enough, because the information obtained must provide an entity of abstraction that is not-only

­­ 1 ­­

beneficial to the tools, but must also be understandable by the developer, providing a means of
quickly and easily relating all the inter-tool concepts, and a means of eliminating the conceptual
gaps. We propose to use Requests as the granularity for interpreting application activity. A request
is a single message sent to a software component for service. Requests can be split into smaller
tasks and serviced by different software components simultaneously. One component may be
servicing various tasks from different requests at the same time. These events must be analyzed so
the request, as its own entity, can be constructed and used for analysis and management. We are
not the first to propose requests. A request-based granularity for understanding workloads has
already been proposed for web-servers. We extend the use of requests for analyzing activity in all
applications, not only web-servers.

The the document is composed of five chapters. Chapter I Is the introduction we have just
presented. Chapter II is a synthesis of the state of the art, concluding with a summary of the
projects and the remaining issues that have not been addressed prior to this work. Chapter III
details our contribution in the unification of application analysis and application management.
Chapter IV shows an implementation of our infrastructure. Finally, Chapter V of this document
shows our conclusions, including a summary of contributions and future work.

­­ 2 ­­

C h a p t e r C h a p t e r I II I

2 State of the Art

2.1 Overview
During the development of our project, we have studied areas of computer science that have

commonly been considered distinct. Our solution provides a base for unifying these subjects. The
subjects are: application analysis and application management. This chapter gives us an
introduction to existing solutions in the domains of application analysis and application
management. Special attention should be paid to understand the underlying instrumentation
techniques used by all of these projects. Some are limited to passive analysis while others are
disruptive to the applications behavior but provide a more thorough analysis. Application
instrumentation is the basis for both analysis and management and provides the grounds for
unifying them.

Instrumentation refers to the techniques to monitor or measure the level of performance, to
diagnose errors and to write trace information from applications. Instrumentation is in the form of
code instructions that monitor specific components in a system (for example, instructions that
output logging information). Instrumentation is necessary to review the health and performance of
the application. In general, instrumentation approaches can be of two types, source instrumentation
and binary instrumentation. Instrumentation is the ability to incorporate tracing code, debugging
code, exception handling code, performance counters and event logs into an application. Our
interest is particularly focused on the ability to insert tracing code into applications and to provide
interposition points. Tracing code serves the purpose of retrieving informative messages about the
execution of an application at runtime. Interposition enables execution of external code at specific
points in the application.

In section 2.2 we explain application analysis projects. We analyze the different approaches for
instrumentation they use focusing on projects that have provided advances and novel techniques in
the domain. We also take a view at application profiling, workload analysis and request tracking,
which are techniques used for application analysis. In section 2.3 we explain application
management. Application management refers to the main techniques used for interposition and
meta-application construction. We explain the approach taken for instrumenting the applications
and also how meta-applications are constructed.

­­ 3 ­­

2.2 Application Analysis

2.2.1 Overview
Application analysis refers to the techniques used to analyze and interpret an applications

behavior. These techniques are varied, but all rely on application instrumentation. Among the
techniques used, we will analyze projects in the domains of software tracing, dynamic translation,
workload analysis, and application profiling. There are differences between the techniques, but
many of the base concepts are the same, making some solutions appear to be a mix of different
techniques.

In section 2.2.2 we will explain DTrace, a novel solution to software tracing. In section 2.2.3 we
give the basic basic concepts and uses of dynamic translation in order to understand modern
bytecode instrumentation techniques. In section 2.2.4 we will explain workload analysis and
profiling. In this domain, we will analyze two different approaches, Project 5, which is statistical
analysis using passive tracing that provides general information on application causality, and
Magpie, which performs deterministic request tracking and provides performance modeling.

2.2.2 Software Tracing (DTrace)
Software tracing is a specialized use of logging to record information about a program's

execution. This information is typically used by programmers for debugging purposes, and
additionally, depending on the type and detail of information contained in a trace log, by
experienced system administrators or technical support personnel to diagnose common problems
with software. Tracing is a cross-cutting concern. Although there exist many projects on software
tracing, the most notable to mention at the moment is Dynamic Instrumentation of Production
Systems (DTrace)[Cantrill et al., 2004]. DTrace is a dynamic instrumentation system that unifies
both user-level and kernel-level software in an absolutely safe fashion. We will introduce DTrace
and provide a short reference to other projects in the software tracing domain.

Dynamic Instrumentation of Production Systems (DTrace)[Cantrill et al., 2004] emerges because
performance analysis infrastructures have not kept pace with the shift to in-production
performance analysis. Analysis infrastructures are still focused on the developer, on development
systems, or both. They have rarely shifted to production systems. This causes problems because
development systems differ from production ones, and it is a complicated task to replicate in-
production systemic problems on development systems. In order to be a viable tracing
infrastructure in production systems, the performance analysis infrastructure must have zero probe
effect when disabled, and must be absolutely safe when enabled. Zero overhead when not enabled
is key because production systems aim at maximizing resource utilization, especially since
resources represent investment. Of course it is necessary also to minimize the overhead when
enabled as to limit interference caused by the tracing infrastructure. Complete safety insures that
executing the analysis infrastructure puts no danger to applications currently in execution.

DTrace has been integrated into the Solaris operating system and has been used to find serious
systemic performance problems on production systems – problems that could not be found using
preexisting facilities. In order to achieve its goal of dynamically instrumenting both user-level and
kernel-level software in a unified and absolutely safe fashion, DTrace has developed a C-like high-
level control language dubbed D for user friendly tracing. Some of the properties of the DTrace
solution are:

­­ 4 ­­

• Dynamic instrumentation – when not in use it generates no overhead

• Unified instrumentation – user and kernel level software can be instrumented

• Arbitrary-context kernel instrumentation – virtually all of the kernel can be
instrumented

• Data integrity – guarantees are provided on data integrity. Data is not lost nor altered.

• Arbitrary actions – the user can enable any probe with any action and safety is
guaranteed

• Predicates – are used to record only necessary information

• A high-level control language – C-like language dubbed “D”

• A scalable mechanism for aggregating data – users may aggregate by virtually anything

• Speculative tracing – deferring the decision to commit or discard the data to a later time

• Heterogeneous instrumentation – Instrumentation providers are formally separated from
the probe processing framework by a well-specified API, making it possible to use
different instrumentation methodologies

• Scalable architecture – DTrace allows many tens of thousands of instrumentation points
and provides primitives for subsets of probes to be efficiently selected and enabled

• Virtualized consumers – Multiple consumers can enable the same probe in different ways
and there is no limit on the number of concurrent DTrace consumers

2.2.2.1 Detailed description of DTrace
The core of the DTrace infrastructure resides in the kernel. Processes become DTrace consumers

by initiating communication with the in-kernel DTrace component via the DTrace library. The
DTrace framework itself performs no instrumentation of the system; the task is delegated to
instrumentation providers. For every point of instrumentation, providers call back into the DTrace
framework to create a probe. Providers must specify the module name and function name of the
instrumentation point, plus a semantic name for each probe. The probe identifier then consists of a
tuple of 4 elements, <provider, module, function, name>, thus each probe is uniquely
identified. Probe creation itself does not instrument the system, it simply identifies a potential for
instrumentation to the DTrace framework. When a provider creates a probe, DTrace returns a
probe identifier. Probes are then advertised to consumers, who can enable them by specifying any
element of the 4-tuple. When a probe is enabled, an enabling control block (ECB) is created and
associated with the probe. If there are no other ECBs associated with the probe (that is, if the probe
is disabled), the DTrace framework calls the probe's provider to enable the probe. When a probe
fires, that is, execution reaches the inserted and enabled probe, control is passed to the DTrace
framework. DTrace makes no constraints as to the context of a firing. In order to assure safety from
the DTrace framework, DTrace itself is non-blocking and makes no explicit or implicit calls into the
kernel-under-study.

When the probe fires and control is transferred to the DTrace framework, interrupts are disabled
on the current CPU, and DTrace performs the activities specified by each ECB on the probe's ECB
chain. When all ECBs have been executed, interrupts are enabled and control returns to the
provider. To simplify matters, all multiplexing of consumers on a single probe is handled by the
framework’s ECB abstraction. Each ECB may have an optional predicate associated with it. If an
ECB has such a predicate and it is not satisfied, then processing advances to the next ECB. The

­­ 5 ­­

ECB is processed if the predicate is satisfied and it iterates over all of the actions defined in the
ECB. Actions can indicate data recording, which is stored in the per-CPU buffer associated with the
consumer that created the ECB. Actions may also update D variables. They are not allowed to store
to kernel memory, modify registers, or make any arbitrary change to the system because that could
risk destabilizing the system. Each DTrace consumer has a set of in-kernel per-CPU buffers
allocated on its behalf and referred to by its consumer state. The consumer state is in turn referred
to by each of the consumer’s ECBs. When an ECB action indicates data to be recorded, it is
recorded in the ECB consumer’s per-CPU buffer. The amount of data provided by a given ECB is
always constant, but different ECBs may record different amounts of data. Buffer free-space is
verified before each recording so there are no buffer overflows.

Actions and predicates are specified in a virtual machine instruction set that is emulated in the
kernel at probe firing time. The instruction set, “D Intermediate Format” or DIF is a small RISC
instruction set designed for simple emulation and on-the-fly code generation. It is a design
constraint that DIF emulation be absolutely safe since it is executed in the context of a probe fire.
To assure basic sanity everything is verified and only forward branches are permitted. All loops are
eliminated in order to disallow infinite loops. Many other safety features have been included to
comply with the absolutely safe policy of DTrace. Some of them include prevention of certain
memory loads. Run-time errors are handled. Hardware faults are handled. Even the kernel’s page
fault handler has been modified to recognize when a page fault has been generated from the DIF
virtual machine.

2.2.2.2 Instrumentation Techniques
By formally separating instrumentation providers from the core framework, DTrace is able to

accommodate heterogeneous instrumentation methodologies. Twelve different instrumentation
providers have been implemented and none of them have any observable probe effect when
disabled Having zero probe effect when disabled is a key feature of DTrace and makes DTrace
dynamical in nature. Probes can be activated and deactivated when necessary. We will mention
some of the providers included in DTrace:

– Function Boundary tracing – makes available a probe upon function entry and function exit.
It is highly dependent on the architecture, requiring many modifications, including the C
compiler. It has been implemented on SPARC and x86 systems using different techniques for
each platform.

– Statically defined tracing – kernel code is modified and provide probe insertion points. You
must be familiar with the kernel implementation to use it effectively. It is typically
implemented by an expanding C-macro.

– Lock-tracing – this makes available probes that can be used to understand virtually any
aspect of kernel synchronization behavior. It works by dynamically rewriting kernel functions
that manipulate synchronization primitives, and is useful for understanding kernel resource
contention.

– System call tracing – this provider makes available a probe at the entry and exit form each
system call. It offers tremendous insight into application behavior with respect to the system.
It works by dynamically rewriting the corresponding entry into the system call table when a
probe is enabled.

– Profile – this provider is an unanchored probe that, instead of being associated with a point in
execution, it is associated with an asynchronous event. The event source for this provider is a
time-based interrupt of specified interval.

­­ 6 ­­

2.2.2.3 Interacting with the DTrace Framework
Using the D Language, DTrace permits users to specify arbitrary predicates and actions. D

supports all ANSI C operations and allows access to the kernel’s native types and global variables.
D includes support for several kinds of user-defined variables, including global, clause-local, and
thread-local variables and associated arrays. D programs are compiled into DIF by a compiler
implemented in the DTrace library. The DIF is then bundled into an in-memory object file
representation and sent to the kernel DTrace framework for validation and probe enabling.

DTrace provides user-level program instrumentation through the pid (process ID) provider,
which can instrument arbitrary instructions in a specified process. The pid provider is slightly
different from other providers in that it actually defines a class of providers. Each process can
potentially have an associated pid provider. The techniques used by the pid provider are
architecturally specific, but they all involve mechanisms to rewrite the instrumented instruction as
to induce a trap into the operating system. The trap-based mechanism has a higher enabled probe
effect than branch-based mechanisms used elsewhere, but it completely unifies kernel and user-
level instrumentation. Any DTrace mechanism that may be used with kernel-level probes may also
be used with user-level probes.

By tracing events in both the kernel and user processes, and combining data from both sources,
DTrace provides the complete view of the system required to understand systemic problems that
span the user/kernel boundary. Although DTrace is dynamic in the sense that it can insert probes
at execution time and execute trace code, the probe emplacements are far from being dynamic
themselves. Most applications require pre-runtime modifications in order to support different
probes. This makes DTrace an efficient infrastructure but it is not completely free to insert
instrumentation in all places. There are other interesting projects worth mentioning, although of
less interest to us than DTrace.

2.2.2.4 Other application instrumentation projects similar to DTrace
Safety augmenting operating system execution with user-specified code has been explored in

systems like VINO [Seltzer et al., 1996] and SPIN [Bershad et al., 1995]. More generally, the notion
of augmenting execution with code has been explored in aspect-oriented programming systems like
Aspectj [Kiczales et al., 2001]. However, these systems are all designed to extend the system but
they were not designed for helping a user understand it. Systems like ATOM [Srivastava et al.,
1994] and Purify [Hastings et al., 1992] instrument a binary and run it in place of the original. This
allows a user to understand the system but their solution is completely static. Static solutions like
these do not provide systemic insight, meaning they cannot integrate instrumentation from disjoint
applications, and they are generally unable to instrument the operating system whatsoever. Also,
instrumentation overhead remains constant during the full execution of the instrumented
application. DProbes [Moore, 2001] is based on dynamic instrumentation and thus has zero probe
effect when not enabled, but DProbes relies on a technique that is lossy when a probe is hit
simultaneously on different CPUs, and misuse of DProbes can result in a system crash. Linux Trace
Toolkit (LTT) [Yaghmour et al., 2000] is designed around a static methodology and introduces a
small, but non-zero, probe effect at each instrumentation point. Arbitrary actions are not possible
and the number of probes is limited to minimize generated overhead. K42 [Wisniewski et al., 2003]
is a research kernel that has its own static instrumentation framework. K42 has lock-free, per-CPU
buffering but K42 implements it in a way that sacrifices the integrity of traced data. Many of its
limitations are the same as in LTT. Kerninst [Tamches et al., 1999] is a dynamic instrumentation
framework of use on operating system kernels. It achieves zero probe effect when disabled, and

­­ 7 ­­

allows instrumentation of virtually any text in the kernel. However, users can accidentally
instrument routines that are not actually safe to instrument and cause fatal errors.

2.2.3 Dynamic Translation
Dynamic translation, also known as Just-In-Time compilation (JIT), is a technique for

improving the runtime performance of a computer program. It converts, at runtime, code from one
format into another (e.g., bytecode into native machine code). The performance improvement
originates from caching the results of translating blocks of code, and not simply evaluating each
line or operand separately, or compiling the code at development time. JIT builds upon two earlier
ideas in run-time environments: bytecode compilation and dynamic compilation. Several modern
runtime environments, such as Microsoft's .NET Framework and most implementations of Java,
rely on JIT compilation for high-speed code execution.

JIT compilers modify code that is to be executed at runtime. There are many purposes for doing
this (e.g., code optimization, code portability) but we are interested in the ability to insert
instrumentation directly into bytecode in order to better understand an application. One JIT
compiler [Olszewski et al., 2007] instruments operating system code by overwriting the system
function table entry corresponding to the function it wishes to instrument. The overwritten
addresses then point to the JIT, which copies the code of the function to a new location and inserts
instrumentation in a quick and dynamic manner directly into the code. All calls to the original
function then pass through the instrumented version of the function, which is controlled by the JIT.
When instrumentation is to be removed, the original system function table is rewritten with the
original address of the non-instrumented function, and the instrumented version of the function is
discarded.

Conceptually debuggers and JIT compilers are similar. Debuggers [GDB][Eclipse] are also a
means for application instrumentation. When an application is compiled and the debugger
instructions are enabled, trap and other instructions are inserted into the application into specific
points. These instructions are then used to return execution control to the debugger. The debugger
can choose the granularity of instrumentation by recompiling the application. The basic fault is
that these instructions produce large overhead and are not dynamic. This is why an application
should not be normally executed with debugger instructions enabled. The difference with JIT
compilers is that instrumentation is performed at runtime and instructions are not only for halting
execution of the application under study, but can be arbitrary instructions for many different
purposes.

2.2.4 Workload Analysis
Knowledge of how a system processes a workload is very important in modern day systems in

order to locate performance bottlenecks and problems. Complex systems are composed of many
different software components that interact in ever more complex manners. These systems must be
analyzed and tools provided in order to improve how the system is understood.

A common scenario is a distributed system that is composed of multi-vendor software
components. A solutions vendor can provide a system built from different modules, but he does not
necessarily have the expertise to correct all performance issues. These multi-developer solutions
can have many performance problems that are hard and expensive to locate. Individual vendors
may provide support and training for solving performance issues within their components, but not
necessarily for solving cross-component issues. Many problems cannot be solved by only focusing

­­ 8 ­­

on single components, and require a system wide view. The tools provided should limit their
requirement of direct support from the components they study, because many components are not
provided with source code. This limits the solution to the borders of components and the
interaction that each component has with the system. Also, tools should be automated as much as
possible, requiring minimal human aid. The purpose of the tools is, in general, not to solve
problems, but to isolate them efficiently and accurately, increasing programmers efficiency.

There have been many approaches providing insight on how to tackle this problem, but most
are not dynamic or require severe modifications of the application under study. One approach
[Hrishchuk et al., 1995] is to obtain causal traces of distributed systems and resource demands, by
labeling each end-to-end activity using an object oriented prototyping language. This approach is
interesting but not useful outside the prototyping system. An old version of Magpie [Barham et al.,
2003] associates traced messages of incoming requests with a unique identifier, and associates
resource usage throughout the system with that identifier. This requires a very sophisticated
tracing infrastructure, but simple post-processing analysis. The Distributed Programs Monitor
project [Miller, 1984] reports causality using kernel implementation to track the causal information
between pairs of messages, rather than inferring causality from timestamps. A different approach is
one that Netlogger [Gunter, 2005] takes, which is to require programmers to add event logging to
carefully chosen points in an application, and then generate "lifelines" that respond to causal paths.
Netlogger provides tools to visualize logs, but the tools are somewhat lacking.

We find two different groups of work interesting and close to ours. These groups are workload
analysis based on statistics obtained from the application under study, and deterministic workload
analysis, which follows requests through a system as they are being serviced. In the following
sections we will give an introduction to both, statistical and deterministic, workload modeling, and
describe the work done by two major projects in these areas. These projects are Project5 [Aguilera
et al.,2003] which is funded by HP, and the newest version of Magpie [Barham et al., 2003], funded
by Microsoft.

2.2.5 Statistical workload analysis (Project 5)
Project 5 [Aguilera et al.,2003] infer causal paths from message traces to locate nodes of a black-

box distributed system causing performance bottlenecks. They provide tools for aiding in
debugging performance bottlenecks in distributed systems of black boxes. Their system is based on
Pinpoint [Chen et al., 2002], and estimates causality between nodes using statistical algorithms.
They use two different algorithms, one for RPC style communication and another for message
based communication, to locate the most likely parent node of an inter-node call. This is similar to
constructing a call-graph, with the subtle difference that one node can be servicing various requests
originating from the same node simultaneously. Since nodes are black boxes and no extra
instrumentation is added it becomes difficult to know exactly which call is related to which return.

For example, in a system with only two nodes, A and B, suppose A calls B three times in a row
before B has had time to finish any of the calls. That means that B is currently servicing 3 calls
from A. B then returns 3 results to A. It is not clear which result from B belongs to which call from
A because nodes are black boxes and the calls are performed across a network. If the system is
implemented using RPC style communication, we would know that A has performed three calls
towards node B. Then B has returned three answers to A. To complicate even more the matter, in a
message based system we would only see three messages going to B and three messages going to
A. In this context, it would not be clear if a message is an originating call or a return. This is
because messages are sent to a node but there is no specific information that tells if the message is
a call and expects a result, if it is a result, or if it is just information to be shared between nodes.

­­ 9 ­­

2.2.5.1 Approach
The approach taken by Project5 to infer dominant causal paths in distributed systems relies on

tracing messages between nodes, and using offline algorithms to infer causality from these traces.
The algorithms developed infer multi-hop causal path patterns, and provide statistics about latency.
The message traces created are relatively simple, and the results are inferred statistically from the
offline algorithms. As previously mentioned, two kinds of communication in distributed systems
are taken into consideration. A causality analysis algorithm has been developed for each type of
communication. The first one, the nesting algorithm for RPC-style (remote procedure call)
communication, operates on individual messages in the trace. The other, the convolution
algorithm for message-based communication, uses signal-processing techniques to extract causal
information from traces. The task is difficult because a real trace contains interleaved messages
from separate causal paths. The approach involves three phases:

I. Exposing and tracing communication. This phase happens online and is where a complete trace
of all inter-node messages are gathered. These traces can be gathered under a real or synthetic
load. Each trace contains, at a minimum, a tuple or series of tuples (time stamp, sender,
receiver).

II. Inferring causal paths and patterns. This phase happens offline and is where one of the two
post-processing algorithms are used. The algorithms must handle noise and incomplete traces,
given the nature of a distributed system. An important factor to consider is that these
algorithms need not be fool-proof, as they are only intended to help humans understand and
debug systems, not to automate control.

III. Visualization. An important factor is being able to understand and visualize the information
that has been analyzed. This phase has only been partially addressed so far and requires more
attention.

The details of the two algorithms proposed are complicated and not necessary for the
understanding of the rest of our project. Instead, we will provide a short comparison of the two
algorithms.

2.2.5.2 Nesting algorithm VS. Convolution algorithm
Comparing the two algorithms comes down to comparing RPC vs free-form messages. The

convolution algorithm can find causal relationships in any form of message-based system, while
the nesting algorithm is only useful in RPC systems. Even further, the nesting algorithm, as
implemented, is not useful in RPC systems with call forwarding or asymmetric returns, forcing the
use of the convolution algorithm in these cases. The nesting algorithm provides a more concise
representation of the system than the convolution algorithm. Also, rare events may be found using
the nesting algorithm, which is not possible with convolution since causality is caught by looking
at spikes in the correlation of two signals, and rare events do not create spikes. The traces gathered
for the convolution algorithm are simpler, only requiring timestamps, sender id and receiver id. For
the nesting algorithm it is also necessary to mark entries with RPC call or return. In some cases this
extra information may be inferred. The algorithm also performs much better if the trace system can
extract call identifiers from the RPC messages. Practical running times of the nesting algorithm are
quite low (much lower than the duration of the traces themselves) and the space overhead is likely
the limiting factor. The convolution algorithm has space complexity linear in the length of the
trace. Running time is the dominant cost for the algorithm and can be much slower than the
nesting algorithm. In practice, there is a trade off between precision of the delay results and longer
running time.

­­ 10 ­­

2.2.5.3 Obtaining traces
In order for the algorithms to work, it is necessary to obtain traces from the system. There are

numerous challenges when attempting to trace all messages between nodes in a distributed system.
Black-box assumptions simplify the tracing problem, because relatively little information is needed
about each message. The black-box solution proposed by project 5 implies that absolutely no
support be required from the nodes of the system, no specific message knowledge be known, and it
does not perturb system performance at all. This is because they do not suppose software vendors
agreeing on any particular solution, so the applications-under-study must not be modified.

Passive network tracing can approximate this ideal, but cannot always expose nodes at the
appropriate level of granularity. Two techniques have been used for achieving passive tracing,
namely Port Mirroring, and Packet Sniffing at each participant host. In the cases where passive
network tracing does not obtain the amount or the detail of information required a more intrusive
tracing mechanism must be implemented. It is true that this compromises some of the black-box
ideals, but if the costs remain low enough the tools may still be useful. It is even possible to have
passive networking traces and more intrusive traces merged, building a unified view of a complex
system built from new and legacy components. This allows programmers to create traces in specific
areas of interest inside their components and still understand the overall interactions of the system.

Overall, project5 adheres to a black-box ideal very well. They provide causality analysis in
distributed systems in a novel and dynamic way. Their dynamicity comes from being able to start
tracing and remove tracing at any moment of execution and, in the case of passive tracing, this has
zero overhead.

2.2.6 Deterministic workload analysis (Magpie)
Magpie [Barham et al., 2003] attempt to correlate events in a system and relate them to the

treatment of a request, providing an interesting method of analyzing overall system interaction and
also the capability of focusing on individual requests in order to distinguish individual work
elements, like those that cause bizarre or aberrant behavior. A request is defined as system activity
which takes place in response to an action initiated by the application being traced (e.g., HTTP
request, database query, file open request). A request is described as the sequence of applications
involved in its processing and the resource consumed at each stage (e.g., CPU, bandwidth, disk
transfer, latency). Request tracking is inherently difficult because of various reasons. There are
many software components involved that are spread across different machines. No globally unique
request ID is present. Multiple thread pools are used to service requests. Threads interchange
request information asynchronously and many synchronization primitives occur in user-mode and
are not visible by the OS or OS libraries. Magpie focuses on distributed systems or more precisely,
multi-tier systems, where elements of the request will be serviced on separate machines and
separate applications. Their work has been implemented on a typical web-service, where part of the
request is serviced on one machine and another part is serviced on a distant machine. A basic
example of this is a web-server running on a frontend machine and a database server running on a
backend machine.

­­ 11 ­­

Magpie logs events belonging to a particular request and performs temporal joins over the log of
events in order to identify the requests and to analyze the resources consumed by that request.
Magpie relies heavily on an event infrastructure already integrated into the Windows operating
system. They utilize an application specific schema to correlate events obtained from the Windows
Event Tracing infrastructure. This application schema relates events in the system produced from
instrumentation, interception and EWT (Event Tracing for Windows), but no global request ID is
required. The application schema is not automatically constructed and a certain degree of expertise
is required in order for it to be constructed. Part of the problem relies on the fact that a single
request is serviced simultaneously by different software components. This occurs because requests
are divided into smaller elements and execution is parallelized. It is necessary to understand how
the software components interact and what each event produced from the system really means. For
example, which function calls cause a thread from a thread pool to be activated or send a message
to a message queue for later servicing. The application specific schema then correlates activities in
the system using thread ID, function name, function parameters, time of the event, and other
elements in order to relate the activity to a particular request. Errors in the schema cause incorrect
attribution of requests and resources. Also, this becomes exceedingly difficult because Magpie
works on legacy applications of which one does not usually have access to the source code, such as
IIS (Microsoft's Internet Information Server). This difficulty in itself, which is to completely
understand an application of which you do not have access to the source code, makes Magpie's
solution unfeasible except for people with advanced expertise in the system and only in limited
cases.

Part of the Magpie project is relating events in the system to identify a request. This is done by
observing the control flow (causality) in the application and by analyzing resource consumption.
This provides a fine-grain way of debugging performance issues. The other part of Magpie's work
is based on workload analysis and profiling of the application in order to analyze applications in a
more coarse-grain manner. This is done by clustering similar requests based on their behavior and
by building a probabilistic workload of the aggregated requests. This information is later used for
performance debugging (e.g., fault detection, configuration, management), and for performance
prediction (e.g., realistic workload models, capacity planning).

­­ 12 ­­

Figure 1: Abstract view of Magpie
Shows a high level and simplified view of Magpie. The system is composed of two applications, a Frontend
and a Backend. Requests are received at the frontend and the request is serviced by different threads
simultaneously. All communication channels are intercepted. Models are specified by an expert of the
system and used to interpret and relate the events from ETW (Event Tracing for Windows) to the request in
question.

Requests

Application 1
(Frontend)

Application 2
(Backend)

Communication
Interceptor

Event Tracing For Windows

Models

Event Tracing For Windows

Models

Clients

MagpieMagpie

2.3 Application Management

2.3.1 Overview
Application management attempts to extract the administration of an application from the

functional concerns. It is beneficial in creating generic software components that are reusable,
because the components can focus on functionality (e.g. their specific job), and not on non-
functional concerns (how they interact e.g., security issues, priority, QoS). There are a couple of
techniques used for achieving application management. Among them, there is interposition and
meta-modeling. Interposition focuses on interrupting execution of the application at a specific
point, and executing predefined functionality. Interposition can be seen as a rudimentary and non-
generic way of constructing meta-applications. Meta-modeling is complicated to define in few
words because there is not a true consensus to what it is. For our purposes, let us say that meta-
models are implemented by means of meta-applications. Meta-applications are the entities that
will control the applications themselves and perform decisions related to application execution.
Meta-applications require information related to the data that is being serviced in order to achieve
their tasks. This information is called metadata.

In section 2.3.2 we explain meta-applications and metadata propagation in general, and we give
a thorough analysis of Causeway, a meta-application infrastructure. In section 2.3.4 we explain
annotation toolkits. They are a fine-grained, inter-code way of providing basic interposition and
control execution flows of an application, but they are not generic.

2.3.2 Meta­applications and Metadata propagation
Metadata is information that is associated with data that is currently being serviced. One

definition of metadata is “Metadata is structured, encoded data that describe characteristics of
information-bearing entities to aid in the identification, discovery, assessment, and management
of the described entities”. Loosely, what this means is that data that exists in the application and is
being serviced can have other data that explains it, commonly understood as higher-level data. The
difference between metadata and the data that is in service is that metadata is non-functional data
in the application, that is, it is information that is not required by the component in order to
complete its particular task. Metadata is normally grouped into a context and is useful for
evaluating non-functional concerns in an application. These concerns can include, but are not
limited to, security concerns, QoS, application performance, and many others. Keeping this sort of
information outside of the application keeps the application itself clean with no extraneous API
usage, and also allows the addition of information to read-only components, such as 3rd party
components.

Context propagation allows programmers to associate information with functional data. The
metadata is hidden from the functional elements of the application and is used when non-
functional decisions are to be made. These decisions are performed by meta-applications. These
meta-applications should only interact with the non-functional data of the application, since they
are to be used for non-functional concerns of the application. Traditionally, there have been two
approaches to writing meta-applications: a log-based approach, and a metadata based approach.
Log-based approaches generally operate in two phases – first, execution events are recorded in
logs, and next, the log records are analyzed. The analysis of logs can be performed while the
application is executing or they can be performed postmortem. A limit to a log based approach is
that the execution of requests cannot be altered because processing of the events lags the execution.

­­ 13 ­­

Metadata propagation is done inline with thread execution so meta-applications can access this
information and control or alter the applications execution. These execution modifications are done
to satisfy the non-functional concerns of the application previously mentioned. The authors of
Causeway adopt the metadata passing approach, hence their objective is to provide a framework
that makes meta-application development easier.

There are two projects of interest that have worked on automatic context propagation and
meta-application construction. These projects, namely SDI [Reumann et al., 2004] and Causeway
[Chanda et. al, 2005], are very similar to one and other. Causeway is a project that implements
almost all the same concepts as SDI and adds a couple of improvements. In order to avoid repeating
two very similar projects we will only explain Causeway.

2.3.3 Causeway
Causeway is an attempt to build a general meta-application infrastructure for multi-tier

applications. These applications are more common than ever and are composed of multiple
programs communicating among themselves that can be spread across multiple machines. Requests
are then serviced by multiple execution threads running in different software components. The
approach is to propagate metadata with request data so that meta-applications can use the
metadata to achieve various goals. These goals should be restricted to non-functional concerns
only.

Causeway provides an interface to associate metadata with threads and facilitates the
propagation of such metadata across communication channels. Causeway manages, handles and
propagates metadata transparently so meta-applications can be easily built on top of it.
Applications that do not require metadata remain oblivious to the contexts being passed, even
though the context exists and there is a constant overhead generated from its treatment. An
alternative to Causeway is to augment all application-level interprocess communication protocols
as to transport metadata. This implies modifying every function call as to make metadata directly
visible and propagated by the applications. Causeway chooses to make metadata propagation an
operating system-level function, to make it independent of the application-level communication
protocol used. This gives Causeway a large advantage, since not all applications in a multi-tier
system have to be metadata-aware.

Causeway proposes automatic propagation of metadata across system-visible communication
channels. By system-visible, we refer to those implemented directly in the system kernel and
system libraries (e.g. sockets, pipes). For non-system-visible channels (e.g. shared memory)
Causeway provides an API to be called from application code in order to transfer metadata.

­­ 14 ­­

Figure 2: Causeway metadata concept.
Shows Causeway's basic concept of metadata propagation. Metadata is directly associated with functional
data, and at every interprocess communication (IPC) point metadata associated to the writer is copied to
the channel. Readers of the channel receive the functional data and are associated to the metadata.
Metadata propagation is handled automatically by the Causeway framework.

Causeway uses an interface for injecting, inspecting, modifying and removing metadata.
Metadata is originally assigned to a thread. When a thread sends request data to another thread
along a channel, Causeway transfers metadata from the former thread to the latter. Support for
metadata propagation is required at transfer-points where an application thread sends or receives
data from a channel.

Causeway consists of two parts in total:

1 Interfaces used by applications to manage and utilize metadata

2 Mechanisms for propagating metadata

2.3.3.1 Managing Metadata
Metadata in Causeway is a tuple containing the metadata-type and metadata-value. Metadata

types include request priority, request identifier, and security identifier. Other metadata types can
be directly specified by the meta-applications. Metadata is managed in a dictionary keyed by the
address of the associated entity. An entity can either be a thread of control or data that is read from
or written to a channel. A thread's metadata is propagated with the data written to a channel on a
write operation. When the data is read, the associated metadata is then propagated to the thread
performing the read.

Metadata can be assigned to a thread in two manners:

1 Metadata injection, using the Causeway API

2 Metadata propagation, when reading data from a channel

It is important to know that newly assigned metadata replaces the thread's metadata of the
same type. This implies that metadata can come from one destination, as to say that a thread is
treating one, and only one, request at any given moment.

­­ 15 ­­

DATA
READ

ACTORS

CHANNEL

METADATA

WRITE

CausewayCauseway

2.3.3.2 Meta­application interaction points
Meta-applications have two distinct ways to interact with Causeway. The first is through an

interface to inject and modify metadata, and the second is through a callback interface, in which
Causeway passes execution to handlers that have been properly registered by the meta-application.
The metadata interface can be called from user or kernel level threads. It consists of four functions
that enable metadata to be inspected and/or modified. The functions are: cw_type_query,
cw_data_lookup, cw_data_insert, and cw_data_remove. The function names are self
explanatory so we will not go into more details. These callbacks are points in the kernel or kernel
libraries where metadata is passed between execution threads. A meta-application can register a
callback method to a certain transfer-point. Transfer points are points where data is read or written
to a channel by a thread. When metadata passes through a transfer point the registered callback
methods are invoked with the metadata as an argument. The order in which the callback methods
are executed is important because a callback method may modify metadata or alter execution. A
registered callback at a transfer point is executed and has access to the metadata and to execution
decisions. For example, if a security ID is lower than necessary, execution of the request can be
immediately terminated.

2.3.3.3 Propagating metadata
Metadata is originally associated with a thread. When a thread performs a transfer of data

across a communication channel, its metadata is associated with the data that is sent. The thread
that receives the data is then associated with the corresponding metadata from the data he
received. In essence, this should happen for all inter-thread and interprocess communication.
Metadata transfer is done using a System Programming Interface (SPI) that consists of a single
function. The function provided is cw_metadata_xfer. It obtains the source entity's metadata
and transfers it to the destination entity. At any transfer point a single call to
cw_metadata_xfer suffices for metadata propagation.

The transfer points that have been instrumented in the implementation of Causeway are the
following:

1 User-level to kernel-level thread

2 Kernel-level to user-level thread

3 Kernel-level thread to message

4 Message to kernel-level thread

Causeway handles sockets and pipes similarly. When a thread writes to a socket or a pipe, the
thread's metadata is associated to the data written via the metadata transfer SPI. This is true only
for local sockets. When using Internet sockets, the data is encapsulated in IP packets for send and
receive across sockets. Causeway encapsulates metadata, in addition to data, in the IP packets.

System-opaque channels occur inside of the application. They are shared-memory channels that
are not visible to the augmented kernel nor to the augmented kernel libraries. For metadata
propagation to be consistent for the whole multi-tier application, these channels must also be
instrumented. It is very difficult to automatically instrument shared memory channels because they
are not easy to locate, and even if a shared memory location is found, there are instances when it is
incoherent to propagate metadata because the shared memory does not imply data transfer (e.g.
application specific memory allocator). For the above conditions this is not done automatically in
Causeway, but Causeway alludes to locating synchronization mechanisms and analyzing them as a

­­ 16 ­­

possible solution to automating instrumentation of shared memory channels. In any case, the
application must be instrumented using the cw_metadata_xfer function previously
mentioned.

2.3.4 Annotation Toolkits
Annotation toolkits are aids for programmers in order to express functionality different then

that of the code itself. This can be to add commentaries for creating automatic documentation, to
add compiler directives for optimizations, to add virtual machine directives that can be interpreted
at runtime, or any number of different activities.

We are interested in annotations that are used for a specific purpose, meta-functionality. In
particular, the annotations that interest us are those that automate non-functional concerns of the
application. We show two different projects that use annotations to express DoS resistance. The
first project inserts the annotations directly into code, and the second one, which is limited to
component-based systems, adds annotations to external files which construct the component
application. Although we are not directly interested in security or DoS attacks, these annotations
give us a manner to make visible application activity that would normally remain obscure. They
also show insight on the feasibility and possible design of an annotation toolkit for our purposes.

2.3.4.1 Denial of Service (DoS)
Denial of Service (DoS) attacks are a major source of concern in the Internet. DoS attacks are
designed to consume a disproportionate amount of resources on the target system by exploiting
weakness in the network software. Such attacks can cause the systems performance to slow down
and even make the system unavailable for well behaving users. Protecting code from DoS attacks is
often considered the responsibility of the OS, firewalls and intrusion detection systems. As a result,
many DoS vulnerabilities are not discovered until the system has been attacked and the damage is
already done. Defensive programming [Qie, 2002] proposes and describes a software toolkit to
improve robustness of code against DoS attacks. It is important to find automated ways of
protecting software. Many factors are involved in making software DoS resistant and, to make
things worse, most DoS attacks are unknown at the time of development. Creating robust and DoS
resistant software is a challenging task. We will explain the solutions that rely on writing ad-hoc
functions to constantly monitor the applications execution flow. Two approaches are studied. One
that annotates the source code with macros that control how a function is used, and may deflect
the execution path in case of suspected abuse. The other annotates external application-design files
for the same purposes.

2.3.4.2 Inter­code annotations
Inter-code annotations are used by an annotation toolkit [Qie, 2002], which attempts to provide

an automated defense against DoS attacks. The proposition is called defensive programming, by
which it is suggested that a programmer must take an active role and provide systematic proactive
protection against DoS attacks by embedding general mechanisms into software. Ideally, defensive
software can protect against previously unknown DoS attacks. The key idea is to insert annotations
that monitor and control the execution of the program at runtime. These annotations serve both as
sensors that detect anomalies and actuators that change the control flow of a program when they
detect that defensive maneuvers are necessary. For this purpose, a toolkit has been developed
consisting of a set of annotation primitives, a runtime library, and a set of compiler extensions.

­­ 17 ­­

Programmers can now specify where resources are acquired/consumed/released, where the
program branches into independent functionalities, and what principals are holding resources.
Rather than focus on implementation details, programmers are asked to identify the services
provided and the resources consumed by their program at a high level. The effectiveness of the
toolkit depends on whether a good defense policy can be specified, which is ultimately the
responsibility of the programmer. However, significant improvement of software robustness can be
achieved with relatively low programming effort. To implement the defensive strategy,
experienced programmers annotate source code of the application with macros. Then, during the
programs execution, macros control how a function is used and, in case of abuse, deflect the
execution path to some other function. Placing the annotations in the right point is a sensible task,
on which all the rest of the system relies. This is also the only possibility of spotting out potential
weaknesses in the program. In case of misplacement of the annotations, the system will be
susceptible to attacks. The toolkit itself proves the feasibility of annotations, but the particularities
of the annotations themselves are not required to be understood because they are DoS specific.

The toolkit is implemented using a different C-macro for each annotation and is linked with an
instance of a corresponding data structure that represents the annotation. There are situations
where the toolkit has difficulty in providing protection to the desirable level. Some of these
situations are implementation issues that can be improved while others are fundamental limitations
of the approach. The current toolkit only applies to a single process because the sensors and
actuators need to share state, and thus, they only work within a single memory space. It is not sure
how inter-process communication may help or hinder. Finally, rate limiting, which is the tactic that
the annotations employ, only controls the quantity of resources consumed by each service, but not
the order that resources are consumed. Not being able to schedule resources may lead to more
conservative specifications in resource limits, and should be improved upon.

2.3.4.3 External annotations
The previous solution relies on annotating the source code directly via macros. Placing these

macros or annotations is a sensible task. A-posteriori Defensive Programming [Schiavoni, 2006]
proposes a different approach, but it is restricted to component-based systems. They show that in
this context, a general mechanism to detect DoS attacks is possible. The key idea is to annotate
services and use the annotations to detect an attack. In component based systems, a component
exposes its services, so in essence, the components themselves must be annotated. These annotations
can be applied after the design and implementation of a component and without modifying either of them. It
is even possible to add DoS protection to an already deployed application. This gives way to the a posteriori
naming of the approach.

Component-based systems are made of an assembly of components that interact through bindings.
Bindings are established between components requesting a service and components providing a service. It is
easy to look at bindings to find components that provide resources and components that consume resources,
helping to identify components that need to be defended and making component isolation much easier
(isolation being an important defense strategy). The proposal is to use annotations at the design level.
Annotations are metadata that mark component interfaces and allow expressing semantics about a
given component. An Overlay of components is a set of components that are marked by the same
annotation. All the services belonging to the overlay are protected by the same defense strategy. A defensive
strategy is defined by an annotation consumer whose role is to detect which semantics have to be applied to
the component annotated with the annotation it is in charge of. When the annotation consumer is deployed
with the rest of the application, it will monitor the activity of all the components in the same overlay. Once
the overlay is defined, the annotation consumer implementing the policy to deploy is completely

­­ 18 ­­

independent of it. The application deployer only has to annotate each service. Being that required
and provided services are explicitly declared this effort is greatly simplified.

The annotation toolkit has been implemented within Fractal. Fractal is a Java-based component
model that provides an Architecture Description Language (ADL), which allows the description of
component configurations. The fractal ADL has been extended adding an annotatedby attribute to the
interface element. This attribute is used to define which annotation is to be used for a given interface.
Furthermore, the implementation relies on Aspect Oriented Programming (AOP) techniques and on Java 1.5
annotations. Java 1.5 annotations are first class elements, themselves annotatable by meta-annotations.
Through meta-annotations, two parameters are specifiable: target, to specify the granularity of an annotation
and, retention, indicating how long an annotation has to be retained. The ADL is parsed by a factory that
produces components whose interfaces are annotated using annotations specified in the ADL
description. Annotation consumers, on the other hand, are developed using AOP techniques. I will give a
very brief explanation on AOP (Aspect Oriented Programming). AOP implements crosscutting concerns that
affect several classes and that are not well modularized. It allows the implementation of these concerns in
well modular well-localized entities called aspects. Aspects are made of dedicated constructs that mirror
well-defined points in program flow and structure. This is called the joinpoint model. A pointcut construct
lets you pick out join points that match a certain criteria, and an advice construct lets you add code to be
executed at those points. To better understand the concepts, there is an implicit relation between
sensors/activators and pointcuts/advices. The aspect using an annotation to define an interesting point in the
execution flow of a program is called annotation consumer.

The final element to be solved is deployment of aspects and components. The Fractal
component model provides a runtime environment that allows creating components from their
ADL definition. Unfortunately, because part of the code of Fractal components is dynamically
generated, it is not possible to intertwine aspects and components source code. The chosen solution
was to modify Fractals runtime (not extend Fractal) to make use of load-time weaving mechanisms
introduced in AspectJ5.0. By focusing on component based systems it is possible to provide a
general mechanism to detect DoS attacks. The provided solution gives two important advantages
over other proposed solutions: (1) source code does not require modification and, (2) it can be
applied at deployment time.

2.4 Summary of the State of the art
In this section we will provide a short summary of the projects explained in the state of the art,

mainly focusing on the drawbacks of each project. This will show us what an ideal solution should
be, and give us the basis for unifying the different projects, providing a series of improvements in
the domains of application management and application analysis. At the end of the state of the art,
we provide a view of what problems exist in current solutions, and give insight on what an ideal
solution would entail.

2.4.1 Project summaries

2.4.1.1 DTrace
 DTrace [Cantrill et al., 2004] adheres to a certain number of principals that make it feasible to be

used in production systems, and is one of the main differences between DTrace and preexisting
solutions like LTT [Yaghmour et al., 2000], DProbes [Moore, 2001] or Kerninst [Tamches et al.,
1999]. These ideals are that a performance analysis infrastructure must have zero probe effect when

­­ 19 ­­

enabled, and must be absolutely safe. That is, its mere presence should not make the system any
slower, and there must be no way to accidentally induce system failure through misuse. DTrace
uses a high-level and safe instrumentation language that has been dubbed D. DTrace is platform
dependent and tightly integrated with the operating system kernel, making it difficult to migrate to
other platforms. Systemtap [Prasad et al., 2005] has been created for the Linux platform and can be
seen, at least conceptually, as a Linux clone of DTrace (for the Solaris OS). Though the
implementation is very different, it remains platform specific. Systemtap is proof that migrating
such platform specific frameworks is a delicate matter. Furthermore, DTrace uses probes to insert
code into running applications or the kernel. These insertion points or hooks are generally
predefined and many even require modifying the C compiler in order to be inserted. This is
precisely the case of the binary instruction “no-op” (no operation), which is an empty operation
inserted at the start and end of every function. This instruction is then overwritten by DTrace with
a method call into the DTrace framework in order to execute instrumentation. Although the no-op
instruction does not produce any noticeable overhead even on micro-benchmarks, it is a static
solution, not dynamic as DTrace would like to imply.

DTrace provides a manner of understanding applications and OS as one in order to help in
systemic problems. It does not provide insight on how applications divide workload or how a single
request is spread across different software components. A fine-grain analysis of workloads is
required. DTrace does not provide mechanisms to modify the execution of applications, nor any
support for non-functional concerns.

2.4.1.2 Project5
Project5 [Aguilera et al.,2003] infers dominant causal paths in distributed systems relying on

tracing messages between nodes and using offline algorithms to infer causality from these traces.
Two statistical algorithms for inferring causal paths have been proposed and have many
disadvantages. First, they are statistical so no individual calls can be distinguished. They provide a
very general vision of how components interact and which components cause bottlenecks. The
algorithms are performed offline because they are costly and because they need a large amount of
traces in order to correctly infer causality. The complete set of traces to be analyzed has to be
obtained in one pass, because results from analyzing one set of traces cannot be aggregated with
other results. Large amounts of traces are needed, causing large calculation times, which makes
them not useful for online analysis. If during the time traces are being obtained the workload on
the distributed system is altered or differs, the results will show a generalized analysis of the
workload, making it difficult to understand the system or it may cause programmers to come to
erroneous conclusions. Statistical algorithms only show relevant results on execution paths that are
frequent. That is, a call path is going to appear as interesting only if it has been executed repeatedly
with very similar execution times. The more variance within component execution times, the less
exact the results of the algorithm will be, making it more difficult to understand the application.
Also, aberrant or seldom occurring behaviors of an application are completely discarded.

Statistical analysis calculations are costly and it is only a “best-guess” calculation. Individual
calls are not identified. We call Project5 a “best-guess” approach because correlation does not imply
causality. Loosely interpreted this means that coincidence is not proof, and this is a basic limitation
of both of their algorithms. Limiting the solution to after-execution is an important drawback
because the information obtained cannot be used real-time in order to make immediate decisions
on the execution of the application at hand, nor is it possible to provide meta-application support.

­­ 20 ­­

2.4.1.3 Magpie
Magpie [Isaacs et al., 2005] is a toolchain that helps understand system behavior by

automatically extracting individual requests from a live system, and then constructing a
probabilistic workload model from this data. The toolchain relies on instrumentation in the kernel,
middleware and application-level components to generate events. Magpie is platform specific and
relies on modifying communication channels that applications use in order to obtain useful
information. These modifications are not dynamic and produce continual overhead. The solution is
low level and relies on complicated event models tailored to the application to properly interpret
the event produced. Even though offline and online versions of Magpie exist, they are only useful
for analyzing the application, and cannot be used for meta-application or context propagation
because of the time needed to parse events. Although non-functional concerns are not addressed by
Magpie, the latter provides automatic workload analysis based on a request granularity, and this is
the strong point of the project.

2.4.1.4 Causeway
Causeway is a general meta-application infrastructure for multi-tier applications. They provide

an automated way of metadata propagation by instrumenting the kernel and kernel libraries. They
provide an API for applications to insert when inter-thread communication occurs but does not
pass through the augmented kernel nor through the augmented kernel libraries. Causeway has
many disadvantages. There are a large amount of OS modifications required that cause permanent
overhead for all applications that use operating system channels, and also make it platform specific.
It is not fine-grained nor is meta-application interaction consistent. The granularity of meta-
applications is restricted to interception points inside the OS. These interception points can have
callbacks assigned to them, and are the basis of meta-application interaction. Applications that
interact frequently with the OS communication channels have many meta-application interception
points, but applications that do not communicate using the OS have a very limited number, making
the meta-applications of little use. Causeway does not use a request granularity, and metadata that
is added or modified can only be used by software downstream. Causeway does not support the
analysis of an application, it only provides automated metadata propagation. No profiling
techniques have been envisioned or are supported with the infrastructure. Causeway identifies
communication points but cannot distinguish individual elements of the application, like the
function that performs the call. Another limitation of Causeway is that a thread is considered
causally dependent to only the last event or last entity that it has interacted with. That is, a thread
only holds the metadata related to the last information read from one of the instrumented system
channels, nothing more. This does not respect causal dependency, where one actor may be causally
dependent to multiple other actors.

2.4.1.5 Defensive Programming Toolkits
Defensive Programming [Qie, 2002] suggests that a programmer must take an active role and

provide systematic proactive protection against DoS attacks by embedding general mechanisms
into software. The first approach is to insert the annotations directly into the code. Not only are
annotations inserted, but the programmer specifies what actions are to be taken in case one of the
conditions specified becomes true, causing a mix of non-functional and functional concerns that
can only be changed by modifying and recompiling the application code. The solution is not
dynamic, nor generic, nor does it support metadata propagation, meta-applications, or profiling of
any kind. It is specific to DoS and resource consumption concerns.

­­ 21 ­­

The second solution [Schiavoni, 2006] is proposed for component-based systems and separates
functional and non-functional concerns by specifying the annotations in component design files,
instead of directly inside the application code. It has many of the same drawbacks as the previous
toolkit, but improves annotations by making them modular and dynamic. The limits imposed on
their work lie on their dependence to AOP. There is constant overhead if they wish to be runtime-
dynamic. The annotations are used to specify services provided by the application and cannot be as
fine-grained as individual instructions.

2.5 Remaining issues
There has been a large distinction between different areas in computer science, as is

performance analysis, workload profiling, context propagation, and application management. Their
particular objectives are not the same, but all these areas rely on the same basis. All of them require
obtaining information from the application in order to perform their specific tasks. Even though
they share this common trait (i.e. a need for instrumentation), they all utilize different granularities
for achieving their goals. Profiling analyzes which functions in an application are being highly
used or where bottlenecks exist. Workload analysis characterizes how applications react to
different types of information it services. Meta-applications attempt separating non-functional
concerns from the application, but they have been limited to interaction points between the OS and
the application, making it difficult to have a true understanding of the application itself. This
causes an application programmer or an administrator to be forced to analyze many different
concepts and relate the results on his own between the different solutions he uses.

Application instrumentation is the foundation for these different areas. Ideally, instrumentation
should be implemented as a dynamic infrastructure that provides variable interaction points that
are adjustable when necessary, focusing on points of interest in the application. In reality,
interaction points in existing solutions are rigid and cannot be changed. Existing solutions have
been limited to a fixed and generally large granularity. Internal operations of an application go
completely unnoticed. In many cases, only external communication is intercepted, and only these
points permit application analysis and application management. Furthering difficulty for
programmers, external communication points are not consistent, and can vary from one application
to another. Some applications may provide many interaction points for meta-applications, while
others do not. In short, meta-applications are not useful for applications they cannot interact with,
and meta-applications must be tailored to the specific limits of applications that do provide useful
interaction points.

In Table 1 we compare each project to the most important characteristics that would make for
an ideal solution. The characteristics are separated into two groups: analysis and management.
This division is sometimes not so clear do to the common dependency on analysis. It shows that
solutions that provide good instrumentation techniques do not provide application management
capabilities. Solutions that provide meta functionalities do not understand or instrument the
application very well. This gap must be bridged in order to provide a unified view of an
application. This unification requires a common granularity. The granularity must be equally
useful for performing application instrumentation, workload analysis, profiling, meta-application
construction, and developers.

­­ 22 ­­

Application Instrumentation and Application Analysis Characteristics1 Application Management Characteristics

Main Objectives
Runtime
Dynamic

Zero­overhead when
not enabled

Platform
independent

Fine­grained interaction or
interception points

Provides execution
interception2

Provides
meta­application
functionalities3

P
r
o
j
e
c
t
s

DTrace Locate systemic
problems.

Depends on probe
implementation. Yes. No. Yes, but depends on probe

implementation.
No. Only obtains data from
the system. No.

Project 5 Statistical causality for
distributed systems.

Yes, when using
passive tracing. Yes. Yes. Used for

distributed systems.
No. Can only distinguish
individual nodes, nothing else. No. It is passive. No.

Magpie Request tracking,
workload profiling. No. No. No.

No. Interaction limited to OS
interception and application
events.

No. Only obtains and
analyzes information. No.

Causeway Meta­application
infrastructure. No. No.

No. But concept is
implementable in
other OS.

No. Interaction limited to OS
interception. Yes. Yes.

Annotation
Toolkit
(inter­code)

Intercept/modify
execution. No. No. Yes. Yes.

Yes, but policies are specified
before execution, and cannot
be modified at runtime.

No.

Annotation
Toolkit
(component­based)

Dynamic Annotations. Depends on AOP
implementation.

Annotations yes. But
dynamic AOP causes
constant overhead.

Yes. Limited to method or function
granularity.

Yes, but policies are specified
before execution. No.

Table 1: Comparison table of projects and desired characteristics for application instrumentation and application management.

1 Refers to application instrumentation, profiling and workload analysis.
2 Can modify execution of the application.
3 Provides high­level concepts permitting the construction of meta­applications.

­­ 23 ­­

C h a p t e r C h a p t e r I I II I I

3 Details of the Contribution

3.1 Overview
We have analyzed the state of the art and we have seen the limitations that exist. Solutions are

specific to the exact problem they satisfy, and cannot be used outside of their particular context.
Most solutions are not feasible in production systems because they are either not dynamic or they
produce too much overhead. Many of the solutions proposed rely on the same bases, like software
tracing, but even so they provide disjoint views of the application they study. Concepts have not
been generalized and are difficult to interpret from one tool to another. Tools are specific for a
specific task and developers are forced to bridge these conceptual gaps on their own. It is necessary
to unite the solutions providing a fine-grained, high-level and dynamic solution.

We propose a system that improves on existing work by removing the limitations seen in the
state of the art. The system is based on Component-Based Software Engineering (CBSE). CBSE is
a branch of the software engineering discipline, with emphasis on decomposition of the engineered
systems into functional or logical components with well-defined interfaces used for communication
across the components. Components are considered to be a higher level of abstraction than objects,
and as such they do not share state, they communicate by exchanging messages that carry data.
Components are black-box entities that express their interactions with other components through
well defined interfaces. Interfaces can be of two types, client or server. Server interfaces provide
the functionality of the component, and client interfaces are used to express a functional
requirements of the component. Client interfaces are bound to compatible server interfaces.
Bindings are the interaction points between two components and can be modified at runtime.
Components provide means of unbinding and rebinding their client interfaces to other compatible
server interfaces. This is useful for constructing runtime dynamic applications, that can adjust to
the requirements of the system by remodeling the application itself. Components can be added,
removed or modified while the application is in execution.

 Our system is useful for centralized component-based applications (i.e., single memory address
applications). We have chosen an implementation based on the component model because of its
modularity, its well defined interceptable interaction points and its runtime dynamicity. These
three characteristics are key to permitting application instrumentation to be dynamic, fine-grained,
and based on a consistent granularity. The component model provides functionality that existing
solutions did not have and were not able to exploit, making them static and coarse-grained.

­­ 25 ­­

Our solution extends the concept of request, as used by web-servers, to component applications
in general. The idea behind using requests is to represent application activity by regrouping
activity to a single action that is initiated externally, instead of viewing application activity
through single entities (e.g., single software component, thread). This is more intuitive for
developers and provides an understanding of the application based on the services it provides.
Requests are the base granularity for our solution. Requests are messages sent from a client
interface to a server interface for treatment. A request can then be divided into smaller tasks, and
serviced by different software components simultaneously. These task divisions are performed in
order to achieve parallelization and optimal use of resources in the system. They are in fact, causal
information pathways that exist in the application, and must be analyzed in order to regroup
activity to its originating request. Furthermore, there is potentially no limit to the amount of
requests being serviced by the application, so each component of the application may be servicing
multiple requests at the same time. A request history is recorded during its servicing, and is called a
request execution path. The request execution history includes important information (e.g. the
components used to service the request, the time spent by each component, the task divisions and
ramifications produced servicing the request).

The first problem we face is the construction of requests as a unique and universal entity for
application analysis. This is achieved by instrumenting the application. Component applications are
instrumented using dynamic tracers that analyze all inter-component activities. Dynamic tracers
are inserted between bindings and produce events every time a message crosses a component
boundary. Dynamic tracers are insufficient for request tracking because components are black-box
entities, so causal information pathways inside a component go unseen (e.g., where requests are
divided into subtasks). It is necessary for these pathways to be seen by the tracing infrastructure.
This is achieved by instrumenting the component itself, turning it into a gray-box component. Per-
component instrumentation is achieved using an annotation toolkit for identifying asynchronous
execution. Dynamic tracers and the asynchronous annotation toolkit produce the information
necessary, given simple analysis, for constructing requests. This provides us with online, fine-grain
and deterministic request analysis.

Requests are now viewed as an entity in the application. We provide functionality based on
requests. A request consumer interface is provided for applications wishing to perform workload
analysis, although we do not provide application profiling ourselves. External applications can
consume request execution paths and do application profiling themselves. Also, we provide meta-
application construction using the same request granularity. Meta-applications are used for non-
functional concerns in the application and are created separately from functional aspects of the
application, improving the separation of concerns. Basically, a meta-application interprets the non-
functional concerns specified by the user, and modifies execution of the application accordingly
(see Figure 3 for a meta-application overview). Meta-applications require metadata in order to
perform non-functional concerns. We group metadata into contexts and provide two unique
context types, namely request context and message context. Contexts are referenced instead of
propagated, avoiding the overhead involved in constantly copying contexts. Meta-application
interaction points are called callbacks and performed by interrupting momentarily execution of the
application. Callback interaction points are voluntarily limited to component interfaces, in order to
maintain the separation of concerns and not disrupt internal functionality of the component4. This
provides consistent, fine-grained (i.e. individual components are distinguished), and fully dynamic
meta-application construction that benefits from requests as the workload division of choice.
Finally, the solution is platform independent and can be implemented in many different component
models.

4 Components are well defined and modular entities. It is not recommended to interrupt their internal functionality.

­­ 26 ­­

Figure 3: Meta-application overview.
Illustrates the concept of meta-applications and how they can interact with applications. Interaction is
provided by fine-grained instrumented points in the application. The meta-application infrastructure
must analyze the non-functional concerns and provide the meta-application functionality to the
application.

In section 3.2 we explain how to monitor synchronous interactions between components using
dynamic tracers. Section 3.3 details how we study asynchronous events using an annotation toolkit
designed for that purpose. Section 3.4 describes how the information obtained from the
instrumentation is used to automatically follow requests in the application. Section 3.5 describes
the usage of requests for making metadata visible to all entities servicing the request. Section 3.6
explains the callback infrastructure and how it is used for constructing fine-grained meta-
applications. Section 3.7 explains the request consumer interface used for profiling and workload
analysis. Section 3.8 compares our solution to the other solutions introduced in the state of the art.
Finally, section 3.9 is a summary of the chapter.

3.2 Synchronous interaction
As previously mentioned, in component-based software engineering, dynamic modifications are

possible without modifying the original source code of the application. We rely on the
reconfigurability of component-based applications in order to construct a tracing infrastructure that
is dynamic. It can be inserted and removed at runtime and causes no overhead when not enabled.
To construct the infrastructure we modify the structure of the application under study by adding
new components. Primitive components remain black-box entities, because the tracing
infrastructure does not modify primitive components and it is unable to know what happens inside
a primitive component. As a reminder, primitive components are those which directly implement
the functionality of the system.

­­ 27 ­­

Security

QoS

Priority

...Non Functional
Concerns

Meta­application
Infrastructure

Instrumented
Application

Fine­grained
Interaction­points

META­APPLICATION META­APPLICATION
OVERVIEWOVERVIEW

In order to study how two components interact, we insert a tracer component in between the
two components, permitting us to analyze each and every call that is made from the client to the
server component. The tracer component is a simple and small component that does a basic
analysis of the call that is being made. It intercepts calls from the client to the server interfaces,
analyzes the call, and then delegates the call to the server. It obtains information like the interface
the call is made on, the time of the call, thread ID, etc. More sophisticated tracers are also possible
and they may analyze the arguments sent between calls and the results returned by the call, but for
our purposes less complicated tracers are preferred. We use very simple tracers to minimize the
effect of the tracing infrastructure on the application, which gives a truer understanding of the
application since there is less interference.

Figure 4: Dynamic tracers to instrument the application.
Left, shows a component application and interactions between components. Right, shows the same
component application with dynamic tracers inserted into the bindings between the components. These
tracers permit tracking thread execution paths in an application.

In Figure 4 you can see how a component application perceives tracers. The original application
runs normally, then tracers are inserted into communication pathways of the application, and we
obtain an extended and instrumented application. This tracing solution is a black-box solution
respecting primitive components. This is because the internal functionality of a primitive
component is not, in anyway, analyzed. Each tracer analyzes one bound interface of the
application. Inserting tracers into every bound interface gives us information on all the inter-
component interactions performed by the application.

It is important to understand how dynamic tracers function and what information is obtained.
When a thread passes from the client interface of an external component, through the binding, to
the server interface of the component under study, we say a call is being performed. This thread
then executes instructions inside the server component, and when finished with the server
calculations, it closes the call on the server component and returns through the binding to the client
component. Each time the thread passes through the binding it is viewed by the tracer. This has a
close resemblance to RPC calls in distributed systems, with the difference that the thread is
followed using its threadID. This is basic functionality of a component call in a single memory-
space. Calls performed in distributed domains are different and beyond the scope the this project.

Dynamic tracers provide a means of intercepting and halting an execution thread in the
application. This is important because tracing statistics and actions regarding application execution
can be performed while the component is executing. For example, if the calculations regarding the
execution time of the call in progress exceed a certain threshold, it is possible to interrupt the
execution and cancel the call. Calculations are thus performed in real-time and can be used for
modifying application execution.

­­ 28 ­­

C

D

E

A

B

C

D

E

A

B

Dynamic tracer / proxy

The precise creation of the tracer components is platform dependent, and varies from
implementation to implementation, so it will not be discussed at this time. There are a series of
steps which must be performed by all implementations of the tracing infrastructure, which are the
following:

1 The Trace Infrastructure must be instantiated and started.

2 The application to be instrumented must be introspected and the instrumentation
points located. These instrumentation points are bindings between interfaces.

3 For each binding to be instrumented:

1 The components must be set to a passive state. Passive state is when no
threads are executing inside the component. This limitation comes directly
from the component model.

2 One tracer component must be created. The tracer component must
implement one client interface and one server interface of the same type as
the binding being instrumented. Tracers have additional interfaces to
interact with the tracing infrastructure (for more information on interaction
between tracers and tracing infrastructure see Chapter IV Implementation).

3 The binding to be instrumented is unbound. The client interface of the
application is bound to the server interface of the tracer. The client interface
of the tracer is bound to the server interface of the application.

In general, a tracing infrastructure of this kind is useful in applications that reside in a single
memory space, but not for distributed systems. Further enhancements may eventually include
distributed systems.

3.3 Asynchronous interaction

3.3.1 Overview
There are limits to the solution. Dynamic tracers can follow each thread through an application,

knowing where a thread is, what components it has passed through, the time spent in each
component, and many other useful elements. What dynamic tracers do not see are inter-thread
communication points, because these events occur inside primitive components, which are not
internally instrumented by dynamic tracers. It is necessary to understand and view asynchronous
execution in order to properly trace applications.

­­ 29 ­­

Figure 5: Hidden component functionality.
Shows an abstraction of thread execution in components. Components can be introspected, but the
implementation code cannot be analyzed. Internal events that a component perform are not visible externally.
The arrows show a thread enter and exit the component.

Figure 5 shows that there are limits on the information dynamic tracers can obtain. They study
events that cross component boundaries, but are not capable of viewing intra-component events.
This is important because it shows a need for finer analysis of applications in order to identify
causal pathways.

Asynchronous execution is characterized by asynchronous events. A thread executes
instructions one after the other in a sequential order. A thread receives data and then executes the
instructions to service it. Data that is being serviced by a thread is in essence sequential, because it
is associated with the thread that is performing the service. Events that break this sequentiality are
known as asynchronous events. Inter-thread or inter-process communication are examples of
asynchronous events. Asynchronous events are important to understand because they transfer
information between different threads. This means that an original task can be partitioned and
serviced by different threads. A common example is the partitioning of tasks in order to
simultaneously service parts of it, making better use of underlying resources, like multiple CPUs.
This is known as task parallelization.

There are many asynchronous events that occur in applications. These asynchronous events are
performed for different reasons and causality between events is not easy to automatically identify.
There are different ways of automatically identifying causality between asynchronous events in
applications. The first is to make many assumptions, restricting the ways in which asynchronous
events are carried out. These assumptions can be very limiting and in many cases they may
incorrectly attribute causal paths, especially when the assumptions made are inaccurate. Whodunit
[Chanda et al., 2007] calculates communication through shared memory automatically. They
assume that all asynchronous communication through shared memory occurs inside of critical
sections, and that the information written to the channel is calculated before the critical section,
and information read from the channel is used after the critical section. Another approach is to
have asynchronous events commented or annotated. This requires external intervention so the
annotations can be correctly placed. Annotations can then be used to identify causal
communication pathways generated by asynchronous events.

We analyze asynchronous events that a component application may perform and provide a
series of generic information probes that are used to correctly attribute causal pathways. We will
call these information probes annotations, but they are not to be confused with Java annotations or
annotations in aspect oriented programming (AOP). The annotations are generic and
implementation independent. They can be implemented in different platforms, under different
conditions, with the necessary per-platform modifications and optimizations. Possible scenarios for
implementing the annotations are different using technologies like Java-annotations, C-macros, an
API, inter-code markers, trap instructions, etc. Their particular implementation will depend on the
chosen platform, dynamic expectations of the application (e.g., compile-time, load-time, run-time),
overhead of the annotation, and other conditions. Eventually these annotations could be

­­ 30 ­­

?
Thread execution path

automatically inserted into code. Asynchronous communication points might be identifiable using
static code analysis or executing instructions through a virtual machine like Qemu [Bellard]. This
would be an interesting extension to our project, but for the moment we will suppose that a
proficient programmer places them in precise locations in order to correctly exhibit asynchronous
behavior.

The annotations should provide enough information for an external application to fully
understand asynchronous events in the application under study. These events detect causal
information paths. The causal paths are, in essence, request paths, since asynchronous events imply
information passing. Figure 6 shows how annotations can be interpreted.

Figure 6: Annotation toolkit.
Shows an abstract view of the information that is obtained utilizing annotations. Left, an application without
instrumentation. Right, the application instrumented with annotations, showing where and what kind of
asynchronous events exist in the application.

3.3.2 Defining annotations
There are a series of annotations that may seem redundant in some cases because of the close

resemblance between the asynchronous events. For example, message queues in shared memory
may seem very similar to operating system pipes, or, socket communication may seem similar to
port communication. The initial reaction is to provide a simple, reduced set of annotations as to
simplify the programmers job of using them. This, in many cases is an optimal solution, but it
limits an application from distinguishing between different asynchronous events. In applications it
might be too costly to probe every type of asynchronous event at once, but it may be feasible to
analyze them separately. Creating different annotations distinguishes events and permits us to
“close” our view of events we are not interested in. Also, a specialized annotation may be more
properly tailored to the needs of a certain asynchronous event, when a general information probe
may obscure specific details.

We see two ways to approach annotation distinction. The first one is to create a highly
specialized, quick execution probe for every possible asynchronous event. This limits growth of the
infrastructure because a new event must be added to the infrastructure in order to accommodate
new asynchronous events. This also complicates programmer productivity because of the ample
gamma of probes to use and to choose from. The second solution is a general probe that utilizes
different parameters so it can distinguish the different event types. This is simple for the
programmer because he only has a very limited amount of probes to choose from, but probes are
generally inefficient and not very expressive of the particular event. Our choice is a mix of the two
former solutions. We have grouped asynchronous events into tight families and we add a couple of
parameters to permit distinction between each family of events. Namely, our information probe

­­ 31 ­­

C

D

E

A

B

Message queue Thread creator/ Thread pool

C

D

E

A

B

families are three: thread calling, message passing, and data streams. The additional parameters
proposed are: Label and Level. These two parameters permit us to give a name to each
individual event or to a group of events, and also to give it a priority or importance. The level
attribute should be considered similar to debugging levels used by logging frameworks such as
Log4j [Log4j]. These parameters are specific enough to permit a programmer to properly
distinguish asynchronous events of interest with ease.

It is necessary for the information probes to not only identify when an asynchronous event has
taken place, but also to obtain specific information from the application. For example, to follow
causality in a message queue it is necessary to identify when the message is placed on the queue
and when it is removed. This requires the use of message IDs. IDs are not limited to messages, and
can be used for threads, message queues, ports, sockets, etc. An ID can be utilized for any entity of
the application that requires it.

The information probes, and the solution in general, do not specify how to implement ID passing
nor do they propose an infrastructure for doing this. In our implementation we leave it up to the
programmer to support artifact IDs, for example, when passing messages it is up to the application
to support the passing of the message ID. In many cases the implementation of IDs may be
simplified thanks to the platform. Utilizing the same example as above, a message placed on a
queue can use its memory address as its unique message ID, simplifying ID propagation. Avoiding
the need to directly propagate IDs makes the tracing infrastructure as “light” as possible since
calculations and storage of IDs are kept to a minimum. The effort invested from the programmer is
minimal. In order to minimize effort for inserting annotations, the annotations could be inserted
directly into underlying libraries in order to make asynchronous event handling transparent for
applications that use these libraries. This is a solution chosen by Causeway [Chanda et. al, 2005]
and SDI [Reumann et al., 2004] and has many disadvantages. For example, the granularity is not
fine-grained and is limited to library calls. Also, the solution is static and affects all applications
running, creating a constant overhead. Asynchronous events that do not use instrumented libraries
go undetected. Finally, assumptions regarding how many messages are serviced by a thread must
be fixed before hand, normally establishing that only one message is treated by a thread at a
particular moment.

In general, the effort of inserting information probes is very small in well designed applications.
Well designed applications should have asynchronous events wrapped in well determined method
calls or functions that are easy to instrument. This means that even if an event occurs many times
in an application, the function that causes it is generally written only once and has to be
instrumented only once. Code modifications are necessary in very specific points, and this provides
support for rapid and deterministic causal path detection.

3.3.3 Proposed annotations
The proposed annotations are for implementation in component models, but are not based on the

particularities of any particular platform or implementation. The component model increases
modularity and code decoupling and thus limits some forms of communication, like shared memory
or shared variables. This is important because most implementations for thread synchronization
rely on shared variables, thus forcing programmers to find new methods of implementation which
are accepted in the component model, like message passing.

Some annotations may be seen as redundant since information may be directly provided by the
platform. For example, Java does not distinguish threads as having a parent/child relationship,
making all threads equal. Other platforms do provide this relationship, so the annotation for this

­­ 32 ­­

relationship would not be necessary. The annotations provided should suffice for an easy
implementation in different platforms utilizing different technologies. Platforms that provide more
information for asynchronous events provide a means for reducing the number of annotations
used. Eventually, if enough information is directly provided by the platform itself, the annotations
would be unnecessary, and all the asynchronous events could be automatically detected and
analyzed. More general than the exact syntax of an annotation, the following annotations show
what information is necessary for causality analysis of asynchronous events.

3.3.3.1 Thread creation and thread pools
Threads are system entities created to execute instructions. Threads belong to a larger entity, a

process, where every process has at least one thread. We focus on single memory space, single
process applications. In these applications, there may be multiple threads interacting throughout
the system. In order to utilize a thread, the thread must be created or an existing thread may be
utilized, for example, by calling a thread pool. To properly determine causality and follow requests
in an application that creates threads or uses thread pools, we are required to know the ID of the
calling thread, the ID of the called thread, the moment the asynchronous event occurs, and finally,
in which component it occurs. This information is sufficient for causality analysis when we make a
couple of assumptions. The assumptions we make are:

1 Each thread that is currently available has an individual, application unique, ID.
After a thread dies this ID may be reused.

2 A thread is causally dependent to only one thread at a time, its caller. That means
that a thread cannot be called to perform two tasks from different threads at the
same time. In the case of thread creation, the execution path of the created thread is
dependent of the thread that created it. For thread pools, the execution path of the
called thread is causally dependent only of the last thread that called it.

3 Every task that a thread performs is causally dependent of the caller thread and is
associated with the execution path of the caller thread unless clearly expressed
otherwise (more details on causality decoupling in section 3.3.3.4 Independent
execution).

Finally, we propose the following annotation for thread task delegation.

Thread_Called(Callee_Thread_ID,Called_Thread_ID,Type,Label,Level)

Callee_Thread_ID The ID of the thread that performs the call.

Called_Thread_ID The ID of the thread that is called and executes the delegated
task.

Type Thread Create or Thread Pool.

Label Generally a string that relates a name of the particular
information probe or of a group of information probes in order
to distinguish them.

Level A positive integer that indicates the importance or priority of
the information probe. The lower the integer the more
important the probe.

­­ 33 ­­

Figure 7: Thread pool/Thread creator.
Shows an abstraction of a component that uses a thread pool. Execution paths fork after the
component into different components. The thread that is called is causally dependent to the
thread that called it. Thread annotations make this information visible to external applications.

As shown in Figure 7, the thread_called annotation provide a means of identifying which
components create threads or utilize thread pools.

Optimizations and simplification of annotations are possible when the platform provides
additional information. For example, if direct support of thread relationships exists (e.g.
parent/child relationship), it would not be necessary for programmers to insert the annotation that
identifies thread creation. This particular optimization implies that the tracing infrastructure would
not know exactly when a thread was created, but once the newly created thread performs a call
and exits the component it was created in, it would cross through a dynamic tracer and then the
parent/child relationship could be analyzed, creating the causal relationship.

3.3.3.2 Message Passing
Components communicate by sending each other messages. Messages are a unit of information

utilized by the application. Messages are not necessarily the same size and how they are
implemented can differ depending on the platform or the needs of the application. What is
important is that messages are not shared across components. Once a message is sent, the
component that sent it no longer has access to the information.

Message passing is not always easy to identify. Message passing should not be confused with
data streams, even if some implementations confuse the two concepts. For example, a socket used
by a web-server for incoming requests operates like a data-stream, but the information obtained is
grouped into a single request that is treated as a message. That way, each request can be
considered as a message passed from the client to the web server, or vice versa, hence we should
use a message passing annotation in this case. Other cases are usually much simpler, as a producer-
consumer application, where threads produce messages and place them on a queue for other
threads to consume. Message Passing information probes are to be used when a distinct, well
defined message is passed between two entities and that message can be clearly identified. We
propose the following information probes for message passing:

Message_Sent(Message_ID,Entity_ID,Label,Level)

Message_Received(Message_ID,Entity_ID,Label,Level)

Message_Read(Message_ID,Entity_ID,Label,Level)

­­ 34 ­­

Thread pool/Thread creator

Thread execution path

Message_ID Must be a unique message identifier for that entity. Messages are placed
on entities, so the message id must not be repeated for the specific entity.

Entity_ID Must be a unique entity identifier for the application. This is used to
uniquely identify message queues, sockets, ports, etc., being used for
message passing.

Label Generally a string that names the particular information probe or group
of information probes in order to distinguish them.

Level A positive integer that indicates the importance or priority of the
information probe. The lower the integer the more important the probe.

Message_Sent is to be inserted in the code exactly before a message is sent to a message
entity. Message_Received is to be inserted immediately after a message has been read from an
entity. This removes the message from the queue making it no longer reachable from other threads.
Message_Read is to be used carefully in the case a message is read from the queue, but is not
removed. This is for cases when a thread reads the message and another thread reads the message
at a later time. Both threads from the point the message is read, are causally dependent to the
thread that has placed the message.

Figure 8: Abstraction of message queues.
Shows an abstraction of a message queue communication model. There are different components
that communicate with a component that stores a message queue. Threads enter the component and
place or remove message from the queue. Message passing annotations make these events visible to
external applications.

Because we study one application at a time, and the application lays in the same memory space,
a simplification to the message queue annotations is to utilize the message address as its unique
identifier. This is only possible when messages are passed by reference, like most object oriented
platforms do. Supposing no message address is repeated in the application, there would be no need
for an Entity_ID.

3.3.3.3 Data Streams and Files
We identify another two types of asynchronous events, namely data streams and files. At the

moment we do not propose annotations for these types of events because these asynchronous
events are causal relationships. Annotations should be simple. In order to create simple annotations
for these cases many assumptions must be made. We will still analyze the events and we propose
using bit-ranges to stock causal relationships between readers and writers of the channel. Data

­­ 35 ­­

Message queue

Thread execution path

streams are incoming and outgoing streams of information. These streams have differences with
message passing, since the stream cannot easily be packaged as a single message. This implies that
there can be differences between the amount of information written at once and then the amount
of information eventually read at once (see Figure 9), creating a complicated scenario of
overlapping causality between writes and reads performed on a stream. Data streams generally
imply a FIFO ordering on the bytes that are sent.

Figure 9: Multiple processes access data stream.
Shows an example of multiple processes reading and writing to the same channel. The amount of
information can vary on every action and it is unclear which process has written information because the
information is homogeneous. Causality tracking is complicated in these cases, but bit ranges could be
stored for identifying causal dependency.

Files on the other hand do not have FIFO ordering restrictions. Files, on disk or in memory, can
be long streams of bytes with reads and writes performed in different places simultaneously. A
possible technique for identifying causality within data streams and files is stocking a reference to
the bit ranges that are modified by a particular thread. As shown in Figure 9, reads and writes do
not have to be the same length, one read could overlap several writes when consulting these bit
ranges, hence the read is now causally dependent of multiple writes.

Generally in an application, data streams can be wrapped and interpreted as messages, limiting
the necessity of calculating complicated causal nestings within streams. There are applications
where it is not possible to construct messages out of data-streams, and this is why we consider it a
different case to analyze. Files, in difference with data streams, are frequently used and pose a
potential bottleneck for finding causal relationships within threads because of the overhead
involved. Complicated stockings of information imply complicated methods for analyzing
causality.

As a note, the same technique used on data streams could be used as an optimization when
performing message passing. When one thread continually writes an extensive amount of
messages, it would only be necessary to record the range of messages written and the thread who
performed the write. Then, any reading thread would be causally related to the writing thread if
his read is in the pertinent range. This optimization clearly improves memory usage and speed
when one thread writes many messages continuously because fewer references are stocked and
less calculations are performed.

3.3.3.4 Independent execution
In many instances automatic causality tracking can be too strict and extensive and may not

correctly interpret the intent of the programmer. In these cases we provide causality-breaking
information probes to indicate that the following actions performed by the thread after execution of
the annotation are now independent of the previous actions.

­­ 36 ­­

P7

P6

7 bytes

24 bytes

12 bytes

10 bytes

20 bytes

P1

P4

P2
Socket or File

Writers Readers

Generally, this should be used as a correction on programmers intent. For example, in a web
server a thread may enter a cycle of indefinite duration to read incoming requests and delegate the
tasks on new threads. These tasks are requests from clients. In this case you have two threads, one
to perform the read and one serving the request, and it is most likely the interest of the
programmer to interpret each request as independent from the thread performing the request
reading. With our earlier annotations, decoupling these events was not possible. In this case a
causality-breaking annotation should be inserted in order to force decoupling between
asynchronous events. The proposed information node is:

independent_execution()

This information probe is used to express that the actions performed before are now causally
independent of the actions to be performed after. This is useful for isolating events or for forcefully
decoupling causality to better interpret the applications intent, or the intent of the developer.

Causality decoupling provides a certain amount of improvements regarding memory and
execution costs. To understand this, we must analyze the context that annotations are used in.
Annotations are used for constructing request execution paths (more on this in section 3.4 on
Request tracking). When causality is decoupled, smaller execution paths are recorded in memory.
Since the execution paths are smaller, they will conclude earlier and can be freed from memory
sooner than a large and complicated execution path. Also, having smaller and less execution paths
saved in memory would improve execution times because less comparisons and less searching is
necessary to create the execution paths.

3.4 Request tracking

3.4.1 Overview
The term request is used by web-servers, but it is not limited to that domain. We apply the term

request to a message sent from a client interface to a server interface of a component for treatment.
These messages are serviced internally by the component. A message can be divided into smaller
tasks and serviced by more than one thread at a time. An application may service multiple requests
simultaneously, and it is not uncommon to have multiple threads executing inside the same
component, complicating request tracking.

We propose automatic request tracking for multi-threaded component-based applications.
Request tracking correlates events produced from dynamic tracers and from the annotation toolkit
to their originating request. Dynamic tracers provide events regarding thread execution. These
events are obtained at component borders and specifically are events regarding calls on component
interfaces. The annotation toolkit produces thread communication events that occur inside
components. Request tracking performs the analysis of these events and maintains a per-request
record of the execution path and of the ramifications of that execution path. In essence, request
tracking identifies and records causal information pathways in the application. Basically, all
activity in the application can be related to a message sent to one of the services provided by a
component.

­­ 37 ­­

3.4.2 Request execution paths
Request paths are the execution history or execution path of all threads that have serviced the

request. They detail which components were involved in the treatment of the request. A request
path can be interpreted as the call graph created from the servicing of a request, which may include
multiple thread execution paths with asynchronous event links to unite them. Individual thread
execution paths are associated with each other using asynchronous events, producing a complete,
per-request, call graph that represents the components used for treating the request (see Figure 10).

Figure 10: Request execution path.
This figure is an example of a Request Execution Path. A request execution path shows the full list of components
traversed by the threads that serviced the request, and their inter-component interactions. The component name
and the time a thread has spent inside each component are recorded. The request path is composed of individual
thread execution paths, that are linked utilizing asynchronous events. The thread execution path is determined
using dynamic tracers. Links between thread execution paths are created using the asynchronous event toolkit. A
thread execution path can be compared to call graphs used commonly for profiling legacy applications.

Dynamic tracers provide information to construct the execution path of each thread. They are
capable of threads when they cross component boundaries and they provide enough information
to create a per-thread execution path. Requests can be serviced by multiple threads. When a request
of a service is made, there is only one thread that initiates treatment of the request, but
asynchronous events provide a means of increasing the amount of threads that service a request.
These asynchronous events are seen utilizing the asynchronous event toolkit.

A request initiates with one execution path, because there is only one thread that begins
servicing. While servicing the message, an asynchronous event may occur causing a split from the
original execution path. This creates two separate execution paths that service the same request.
The asynchronous event serves as a union between these asynchronous paths. We utilize the
asynchronous event toolkit for creating these links because the toolkit provides information on
causal information pathways in the application, which is the pathway the message in service is
taking. The asynchronous event gives information concerning the thread ID that has caused it, in
what component it has occurred, what kind of event it is, and at what time. In other words, we
follow the path that the message in service takes, creating a branch when information is sent from

­­ 38 ­­

Request Execution Path

Synchronous execution path

Asynchronous event “link”

Execution path thread 1

Execution path thread 3

Execution path thread 2

Component traversed by thread

this thread to another, and we record a history of the components involved and the time spent per
component. The end result is a series of “glued” together synchronized execution paths, using
asynchronous events as the glue.

At the moment, only the amount of time a thread spends per-component is recorded, and the
amount of time a message waits on a message queue. Time is information that is easily calculated
across different platforms. Resource consumption is not easily calculated. In order to estimate per-
request resource consumption, like CPU cycles, network resources, disk resources, it is necessary
for a low level event system to be utilized. This event system must provide information on the
resources consumed by each thread. With that information it is only necessary to consult what
request is being serviced by the particular thread and add the resource consumption to that request.
It is not our interest to work on an event system because they are platform specific, and not
portable. Resource consumption can be rapidly added to the request tracking mechanism if such an
event system exists.

3.4.3 Modifying request tracking granularity
The granularity of request tracking is provided by the dynamic tracers. Tracers provide the

request tracking mechanism with information regarding the boundaries of components and when
these boundaries are crossed. In order to distinguish every component in the application, it is
necessary for a dynamic tracer to intercept every call between components. This causes overhead,
and in some applications this might not be acceptable. If coarse grain tracing is acceptable or
preferred, an application can reduce the amount of dynamic tracers, causing the request tracking
mechanism to view less components. The amount of threads that are viewed by the dynamic
tracing infrastructure would be the same, because the annotations themselves would not change,
but the amount of components recorded in the request execution path would be less. Per-request
statistics would remain the same, but since less components are distinguished, the per-component
statistics would increase because the data from missing components would be added to components
that are correctly distinguished, thus compensating for the missing components. Careful attention
should be paid, because incorrectly placing dynamic tracers could cause the request tracking
mechanism to miss requests being serviced. This is because a request is seen by the infrastructure
when the first thread that services the request passes through a dynamic tracer.

3.4.4 Request consumer mechanism
The request granularity of a workload has already been proposed for workload profiling in web

servers. We propose utilization of requests for profiling component based applications. This
granularity better serves profiling applications, and helps in improving application performance
and in debugging applications.

Our application does not provide any workload profiling nor does our work focus on profiling
techniques. We do feel a need to respond to the necessity of workload profiling, so we have
provided a request consumer interface. External applications can subscribe to events produced by
the interface in order to perform application profiling. Each time a request is completed or is
terminated, the request tracking mechanism sends the request execution path to all subscribers. The
subscribers are free to analyze the request using any technique they implement. At the moment
profiling is limited to temporal statistics because we have not provided an event system for
resource consumption. This event system would provide workload profilers with much more
information for characterizing the application under study, but event systems are platform specific.

­­ 39 ­­

3.5 Context propagation

3.5.1 Overview
Metadata is non-functional application data that is associated with functional application data.

Metadata is handled externally from functional data, providing a separation between functional
and non-functional concerns in an application. This separation promotes component reuse because
different applications can use components in different non-functional contexts, or vice versa, the
same non-functional concerns may apply to different components. It is our interest to permit an
application to transparently and separately manage metadata by creating a meta-application
infrastructure. For this to be feasible we must correctly deduct causal relationships between the
activities that occur in an application. Our dynamic tracers and our information probes make causal
information paths visible, providing enough information to correctly propagate context throughout
an application. These causal pathways are analyzed by the request tracking mechanism. We
propose requests as the application entity to be used for metadata propagation.

Request tracking provides the basis for our automatic metadata propagation infrastructure. We
believe that metadata should be managed utilizing a request as the base granularity. This continues
our idea to represent application activity at a per-request granularity. Metadata is grouped into
contexts and propagated along side application data. Context is the base unit for non-functional
data propagation. A context is associated with an entity in the application, being either a message,
a request or a thread. A context must follow causal pathways as does functional data, maintaining
this association throughout the treatment of the request. We propose two novel types of context,
request context and message context. We provide an automated mechanism for propagating
context through an application, and a callback mechanism in order to access and modify contexts.
Our automatic propagation mechanism relies on request tracking and fully respects causal
information pathways. Contexts are accessed using callbacks. A callback is additional functionality
that is added at component frontiers. Callbacks are associated to dynamic tracers, because tracers
interrupt component calls at component borders. Dynamic tracers halt a thread at the boundaries
for two purposes; one, real-time construction of the request path and metadata propagation, and
two, execution of meta-applications by means of callbacks. Context propagation is performed
automatically and transparently in regards to functional components of the application.

3.5.2 Metadata key­value pairs
Metadata is a key-value pair that is saved in a context. Contexts contain a group of metadata

and can be per-request or per-message. (Details regarding message contexts and request contexts
are given later.) Each of these types of contexts records metadata in the same fashion, but they are
propagated differently. Metadata can be added to a context, removed from the context or modified.

We propose two functions for treating metadata. These functions are simple getters and setters
for metadata key-value pairs. It is important to note that since there are two different contexts
associated with an entity at a time, we propose a separate function for treating each type of
context. The first type being the request context, and the second the message context, which will
both be explained later.

get_message_metadata(Key) returns Value

get_request_metadata(Key) returns Value

­­ 40 ­­

set_request_metadata(Key, Value)

set_message_metadata(Key, Value)

The get functions search for metadata that matches the provided key. When found, the
metadata value is returned. If there is no metadata matching that key then a null value is returned.
The set functions add metadata to the context and modify existing metadata by means of
overwriting it. If there is no metadata matching the key provided then the metadata is added to the
context. If there is already a matching key, then the metadata is overwritten with the new value.

In general, these get/set functions provide the necessary, but minimal, functionality for
administrating metadata in an application. Eventually these functions could be extended to include
much more metadata functionality or to optimize certain operations. For example, if a user wishes
to update a value he must first perform a get to view if the metadata exists and to retrieve the
metadata value, then perform a compare if necessary, and finally perform a set to insert the
value. For the time being our get/set functions are sufficient for our purposes of constructing a
meta-application infrastructure.

3.5.3 Request context (global context)
Request tracking, as explained earlier (see section 3.4 Request tracking), records information

regarding which thread is servicing which request. This information permits us to relate a request
context to all entities servicing the request. This context can be seen as a global context because
there can be multiple threads or messages that reference it (see Figure 11). If the request context is
modified, either by adding, removing or changing its metadata, these modifications will be
instantly seen by all entities of the request. Request contexts are propagated through causal
pathways. A request context, when created, is associated with a thread. When an asynchronous
event occurs, the context continues its association with the thread that caused the event, and is
now also associated with the entity that is causally dependent of the thread.

Figure 11: Request context.
We show how request contexts are referenced and how they propagate across asynchronous events.
At each asynchronous event, the request context remains untouched. The dependent entity now
references this request context, providing shared metadata between entities pertaining to the same
request. Modifications to the context are viewed by all entities of the request

Some of the uses for a per-request context are security, priority, QoS, etc. A request can save
metadata related to non-functional concerns of the application. This metadata can be accessed and
will affect every entity of the request. An example of utilization is resource limits. For example,
requests are permitted to consume a limited amount of resources. When servicing of a request
starts, the resource metadata is set to zero. When servicing continues and resources are
consumed, the request context is updated. If the request exceeds the permitted limit, the request

­­ 41 ­­

Reference the
same context

C1

Th2

Th3

Th1

Execution thread

Context

Request Context

can be canceled. Cancellation is not directly supported, but threads can poll to view resource
consumption and cancel execution if limits are exceeded.

3.5.4 Message context (local context)
A per-message context is related to the message being treated or stocked. Per-message contexts

are stored within a thread context up to the point where an asynchronous event happens. At
asynchronous events the context is copied and an independent, but identical context is created and
stored with the asynchronous event (see Figure 12). A modification of the per-message context
after an asynchronous event is local and does not affect the original or any other context. For
example, if a thread places a message on a message queue, the context of that thread is saved until
the point the message is received, and the context is then added to the thread-context.
Modifications are only viewed “downstream”, since the context is propagated and duplicated after
these modifications happen.

Figure 12: Message context.
We show how message contexts are referenced and how they propagate across asynchronous events. At
each asynchronous event, the message context of the entity that initiates the event is duplicated. Each
context is now independent and propagated separately through the application. Modifications to
metadata in a particular message context are not visible to other contexts.

There are a series of uses for per-message metadata. Message contexts are used when a metadata
is provided that is required at specific points later in the execution path. For example, if we analyze
a two stage web-server, where the request is divided into two parts, the first one serviced by the
stage that controls the dynamic content, while the second part is serviced by the stage that controls
database access. If we were to control resource consumption, we can provide independent limits for
each stage. CPU usage for the first stage would naturally be higher, than that of the second stage.
Accessing the database implies disk usage, so the disk-resource limit would be higher in the second
stage. With message contexts, the metadata type could be repeated across the application, with
different values, and modifications to metadata are local. Other examples regarding priority or
quality of service can also be imagined.

3.5.5 Handling multiple contexts
A thread can be causally dependent of different asynchronous events that, in essence, create a

dependency link between various execution paths. Since these execution paths may reference
contexts, the natural thing to do is now have dependent thread reference these same contexts
because of the causal dependency. This is explained earlier where message contexts are duplicated
and are specific to causally dependent entities and request contexts are associated by causally

­­ 42 ­­

Context copy at
asynchronous

events.C1'

C1''

C1

Message context

Execution thread
Context

Th2

Th3

Th1

dependent entities. We have not evaluated, until now, the possibility of a thread referencing
multiple contexts because it is dependent of multiple execution paths.

Figure 13: Multiple contexts.
We show that multiple contexts can be assigned to a thread. This is normally caused from multiple
asynchronous events, of which this thread depends (e.g., reading messages from message queues). In
order to respect causal dependencies, the contexts must be each taken into consideration, not only
overwritten by the newest context.

To better understand the problem we shall start with a simple use-case. For example, a thread
may read two messages from a different queues in order to execute a particular task. Supposing
both messages reference a message context and a request context, we must analyze how to manage
multiple contexts of the same type (see Figure 13). The following is a list of examples that must be
dealt with and have not been considered by other solutions because existing solutions have limited
causal dependency to only the last causal event.

• You may erase older contexts and replace them with newer contexts, limiting the amount of
referenced contexts of each type to only one. This solution is used by Causeway [Chanda et.
al, 2005] and SDI [Reumann et al., 2004], although they only reference one type of context
each. It is chosen because they both assume that a thread treats only one message at a time.
This means that the thread is causally dependent to only the last asynchronous event,
which is often untrue and is also too limiting in many cases.

• You may have a thread reference various contexts of each type. The difficulty here is now
related to providing a straightforward access to the metadata. It may be difficulty to expect
a user to completely understand and know how many or what contexts are related to the
specific entity at one precise moment. In fact, it is our supposition that a user does not know
all causal dependency at a specific moment, as a part of our contribution is to provide an
infrastructure to improve his understanding.

• You may create a union of contexts, overwriting only metadata that is repeated. When an
entity is dependent of two contexts, you analyze each context and create only one,
enlarged, context, containing each type of metadata without repeating. This would imply
overwriting metadata values of types that our duplicated. This is a mix of the two former
solutions because most elements of each context are preserved, but we eliminate repeated
information. In fact, if a user accesses a context and expects a particular type of metadata to
be there he will find it, although it might not contain the value he would be expecting to
see.

In order to make things as clear as possible for a user we must try and make context
modifications as local as possible. We have slightly different solutions for each type of context. In
the case of two message contexts that become related to the same entity, we unify them into one,
creating an enlarged context. We perform this feat by overwriting repeated types of metadata with
the value inside the newer context. This solution is local since a message context is unique to an
entity, only affecting events that follow “downstream”.

­­ 43 ­­

C0 C1 C2

Execution thread

Context

Multiple contexts

Thread
AsynchronousAsynchronous

EventsEvents

The previous solution works well with message contexts, but it is unacceptable with request
contexts, because a request context can be referenced by many entities at a time, and mixing
request contexts by overwriting repeated metadata types can modify other entities expected
behavior, not to mention making it very complicated to understand where a metadata value
actually came from or why it was modified. We this in mind, we wish to make metadata
modifications local, since multiple dependency, which is the factor that causes multiple contexts, is
also local. Our decision is to have an entity relate to more than one request context, saving the
precise order of relation. This makes newer referenced request contexts more important than older
ones. As before, we fall into the problem of handling repeated metadata types because two contexts
can have the same metadata type. The solution, which is simple and can be eventually modified,
consists in searching for the first metadata type that falls under the users search criteria. This
makes the order in which the request contexts were saved important, since the newest reference
added will be the first request context searched. To treat modifications to metadata values or
adding new metadata key-value pairs we follow the same philosophy of newest context first. This
means that new metadata is added to the newest referenced context and that modifying existing
metadata is done by searching the contexts for the metadata type from newest to oldest until
found.

Treating multiple contexts is complicated and our solution is by no means perfect. We provide a
solution based on our suppositions of what a programmer would expect. There are cases that we
can imagine where our solution is by no means the preferred one. Also, we should not forget that
these entanglements of causally dependent information are less common than regular causal
dependency, but there are many applications where they do occur and it is necessary for them to be
treated according to the programmers intent.

Eventually, we could provide many different multiple context treatment methods and have the
user specify which one he would prefer to use, or to propose his own management system. For
example, a context priority could be used to specify that metadata in one context is more important
than metadata in another, enabling priority metadata to overwrite other metadata. For the moment
our solution is sufficient in providing automatic causality-respecting context propagation. Further
pursuing the subject is beyond our immediate scope.

3.6 Callback infrastructure

3.6.1 Overview
A callback is executable code that is passed as an argument to other code. Usually, the code is

passed as a pointer or handler to another function. In this case when a certain event happens or a
particular piece of code is reached, additional or user described functionality can be executed. In
component applications, callbacks, are themselves, implemented as components. Callbacks
components implement non-functional concerns of an application. We propose implementing non-
functional concerns at component borders, as to disturb as little as possible component
functionality, providing a means to modify non-functional concerns at runtime and to increase
modularity and component reuse. Callback interaction takes place when a thread enters a tracer.
The tracer that is executing will notify the tracing infrastructure of the event. These events include,
but are are not necessarily limited to, the following events:

• A server interface method is about to be executed, namely a “pre” method.

­­ 44 ­­

• A server interface method has finished, namely a “post” method.

• An error has occurred during the execution of the server interface method.

The tracing infrastructure must provide an client interface that notifies the callback manager of
the event. If there is a callback associated with the event and the tracer in question, the callback is
executed. Callbacks have access to application metadata. A callback is permitted to access and
modify metadata associated with the information that the thread which executed the event is
servicing. Operations on both, request context and message context, are permitted, but are limited
to the contexts associated with the information being currently serviced. Callbacks cannot modify
other request or message contexts.

At the moment we propose no limits on code that is executed by callback components, so
special attention must be paid in order to avoid crashing an application or modifying undesired
parts. Safe execution of callbacks could be supported in later versions.

3.6.2 Callback components
A callback component should be used for accessing, adding, removing and modifying metadata.

Callbacks can perform decisions regarding execution of the application based on metadata values.
This extracts meta-application behavior from the application, and it also makes meta-applications
dynamic, since the callback components can be added and removed at runtime. In general,
callbacks are used for all non-functional concerns an application may require, such as QoS,
security, prioritizing requests, resource consumption analysis, etc.

Callback components should be created using a callback component factory. The idea is to limit
the need for a user to be disturbed with the implementation of the meta-application infrastructure,
and in particular with the callback infrastructure. A component factory creates a component that
corresponds to the functionality that the user describes for each of the events supported by
callbacks (i.e., pre, post, error). Then the component can be used and added to the meta-application
infrastructure to interact with the metadata of the application. As a note, adding the component
into the meta-application is not the same as defining meta-application interaction points. Meta-
application inter-action points are described next.

3.6.3 Defining callback interaction points
Callback interaction points must be provided by the user. The callback components themselves

are housed in the meta-application infrastructure, but the interaction points of callbacks are directly
associated to dynamic tracers, because dynamic tracers interrupt normal execution at component
boundaries. A user of the system then then specifies the interfaces in the application where a
callback component should interrupt normal execution and provide additional functionality. The
meta-application infrastructure then associates the interfaces provided to the dynamic tracers
intercepting calls on the interface. There can be more than one callback associated to the same
interface. This gives the user the possibility of generalizing meta-application behavior to different
parts of the application, instead of having to add functionality one interface at a time. In essence,
this means that one callback component can be called, possibly simultaneously, from different parts
of application code. When selecting where to implement callback components, there may be
overlaps with other callback components. This provides extra functionality and differentiates
callback behaviors, encompassing them into independent objects. Callbacks must be prioritized
because callback components may modify metadata, altering posterior callback component

­­ 45 ­­

behavior. Components with higher priority are executed first, and components with the same
priority are executed in order of assignment to the interface.

3.7 Profiling
Profiling is one of the purposes of creating our infrastructure, but it is not directly performed by

our infrastructure. We believe that a request granularity is useful for analyzing workload and
application performance for all component applications. We provide a profiling interface, where
profiling clients can subscribe to request execution path information. Each subscriber receives the
request execution path of a newly completed request. The execution path includes, at the moment,
all components traversed, all threads used to service the request, the asynchronous communication
points and the amount of time each thread has spent in each component.

Resource consumption is also important to follow. At the moment we do not address this issue,
because resource consumption requires a low-level event system and is fully dependent of the
platform. The events required by our infrastructure for analyzing per-component and per-request
resource consumption must indicate the amount of resources consumed by each thread. The meta-
application infrastructure would then be able to add these resource consumption events to the
appropriate request execution path record. Utilizing event systems like Event Tracing for Windows
or newer propositions like JSR-000284 Resource Consumption Management API, would provide our
infrastructure with the necessary information to add this functionality.

3.8 Comparison to other projects
We have compared our project and contribution to the projects that we studied in the state of

the art. This comparison will show the differences between our work and existing solutions. We
shall emphasize our advantages over the existing solutions.

3.8.1 Comparison with DTrace
DTrace [Cantrill et al., 2004] focuses on understanding how applications and the operating

system interact as one. DTrace is implemented specifically for the Solaris operating system. Our
project is focused on single component based systems in general, not any particular platform. We
provide a general mechanism that can be implemented, although with small modifications or
platform specific optimizations, on many different platforms and in many different component
models. As such, our solution is platform independent, unlike DTrace. Systemtap [Prasad et al.,
2005], a DTrace clone for Linux, has shown just how difficult it is to migrate the DTrace solution.

DTrace's instrumentation uses probes to insert code into running applications or the kernel.
These insertion points or hooks are generally predefined and may even require modifying the C
compiler in order to be inserted. Many of the probes are by far dynamic, and are introduced into
applications by providing hacks. Our solution relies on the intricacies of the component model to
provide dynamic instrumentation. Also, we provide request tracking, context propagation and
application management. DTrace avoids modifying execution of applications in order to maintain a
completely safe policy.

­­ 46 ­­

3.8.2 Comparison with Project5
The algorithms proposed by Project 5 [Aguilera et al.,2003] have many disadvantages. First,

they are statistical so no individual calls can be distinguished. They provide a very general vision
of how components interact and which components cause bottlenecks. The algorithms are
performed offline because they are costly and because need a large amount of traces in order to
correctly infer causality. Traces are a whole entity that are used to perform the calculations, that is,
you can not calculate causality on one set of traces and then add another set of traces at a later
time. Because the amount of traces is large, calculation times can be long, which makes them not
useful for performing real-time decisions on application performance. If during the time traces are
being obtained the workload on the distributed system is altered or differs, the results will show a
generalized analysis of the workload, making it difficult to understand the system or it may cause
programmers to come to erroneous conclusions.

In comparison with our work, Project5 is much less invasive but is performed postmortem and
is only a heuristic. Our work is deterministic and much more fine grained, since we distinguish
single components inside of a larger application, instead of individual nodes of a distributed
system. Statistical analysis calculations are costly and it is only a “best-guess” calculation, and
individual calls are not identified. We call Project5 a “best-guess” approach because correlation
does not imply causality, and this is a basic fault of both of these algorithms. Also, aberrant or
seldom occurring behaviors of an application are completely discarded. We can, on the other hand,
analyze a single petition or request in the system, distinguishing every component utilized to
service the petition and every thread used, making it possible to study and analyze application
behavior in a fine grained and real-time manner.

3.8.3 Comparison with Magpie
 Our solution is of a higher level than Magpie [Barham et al., 2003] because we focus at the

component level. We avoid platform dependent solutions, like resource consumption analysis,
which is based on low-level event infrastructures that would depend on the specific
implementation of the component model. Instead, we insert dynamic interceptor components inside
the application to study it, making the solution feasible for any implementation of the component
model, supposing they support dynamic reconfigurations. Magpie does not modify application code
but must instrument communication channels and utilize event libraries to perform request
tracking. Our project, at the expense of inserting inter-code annotations which we feel is a minimal
and simple effort, obtains a correct request path with low cost calculations and is a completely
deterministic effort. These simple annotations remove the necessity of having complicated event
schemes which themselves are error prone to produce and require a certain expertise and
understanding of the application.

Magpie performs modifications to communication channels which cause permanent overhead
on the running applications. These modifications even affect applications that are not being
studied. The modifications are application specific and need to be modified for every application
that is studied on the system. The models used to perform partial joins over the events in order to
construct the request history are completely dependent to the application, and can not be reused.
Our work requires a small effort to insert annotations into the application under study in order to
correctly view asynchronous events and reliably construct request paths. Other than the
annotations, request tracking is fully automated and completely dynamic, making it feasible to use
in production environments.

­­ 47 ­­

Finally, our infrastructure is a meta-application infrastructure used for component models and
also based on the component model itself. It runs parallel to the applications it analyzes, and does
not affect other applications in the system.

3.8.4 Comparison with Causeway
Causeway [Chanda et. al, 2005] is used on multi-tier applications and thus, is very large grained

in their meta-application interaction points. Causeway's static modification of the kernel and kernel
libraries causes overhead on all instrumented system calls, even when Causeway is not in use. Our
solution is dynamic and the instrumentation is application centralized, instead of OS centralized.
The instrumentation does not affect other applications and can be inserted and removed even at
runtime.

We provide a unified granularity for both, application management and application analysis.
Causeway has focused on controlling applications only at external communication points. This is
large-grain and not useful for great variety of applications. We provide fine-grain interaction and
interception points in the application. We provide novel types of metadata, namely request and
message contexts. Causeway does a simple copy/paste of metadata on communication channels.
Another limitation of is that a thread is considered causally dependent to only the last event or last
entity that it has interacted with. That is, a thread only holds the metadata related to the last
information read from one of the instrumented system channels, nothing more. We suggest that a
thread should be dependent to all events that have occurred before, unless specifically specified by
the programmer. Because we respect causal dependency, we have provided methods for treating
multiple contexts, and for decoupling causal dependency. Our solution is based on programmer's
intent.

Causeway's choice to piggy-back metadata on threads causes a constant overhead which
eventually limits the size of metadata. Every system call implies a transfer of metadata from the
user-level thread to the kernel-level thread. Our solution saves references to metadata so when an
asynchronous event occurs, and only when asynchronous events occur, message contexts are
duplicated, because they are entity specific, but request contexts are referenced. These operations
only happen when information is passed, not at every system call. Unlike Causeway, there is no
threat of surpassing the overhead limit when associating new request contexts.

3.8.5 Comparison with Defensive Programming
We both utilize a set of inner-code annotations to provide us with necessary information.

Although the information obtained and the way it is used is very different, the basic idea that
programmers should take an active role in activities other than functionality, for example defense
or tracing, is the same. The annotations used for defensive programming describe resource
consumption, while our annotations describe asynchronous events. Resource consumption
annotations not only obtain information, but they affect the control flow of the system. Control
flow is specified by the annotation and is specific to DoS defense. Our annotations are simpler and
do not change the execution of the program5. There are no extra control functions added, just a
quick evaluation of the event in order to correctly construct the request path. Controlling execution
in our solution is dynamic, fine-grained and done automatically at component borders. We provide
a means of creating abstract meta-applications.

5 Annotations do not modify execution, but our meta­application infrastructure by means of callbacks does provide
a means for controlling and modifying execution flow.

­­ 48 ­­

3.8.6 Comparison with A Posteriori Defensive Programming
The most important aspect of their work is that annotations can be applied after the design and

implementation of a component and without modifying neither of them. It is possible to add DoS
protection to an already deployed application using AOP techniques. This gives way to the a
posteriori naming of the approach. The main defect in their work is the utilization of an annotation
parser at runtime. It causes a constant overhead that we feel unacceptable. This is mainly because
of their dependency on AOP technology, and the current limits that exist in AOP. Our annotations
must be inserted into functional code, as they cannot be expressed separately because of the fine
granularity required. This limitation has forced us to look at other options. We obtain dynamicity
utilizing various technologies, namely a binary code parser (ASM [ASM]) and a Java tool (JVMTI
[JVMTI]) for code hot-swapping at runtime. This solution is more difficult to implement and
depends much more on the platform at hand, but provides a fast manner of activating and
deactivating instrumentation. This platform dependency of our particular solution does not limit
similar techniques being implemented in other component models.

3.9 Summary
In this chapter we have presented the necessary techniques and information for automated

request tracking, context propagation and meta-application functionality. We present dynamic
instrumentation in component-based applications by means of dynamic tracers. We give a
thorough analysis of asynchronous communication events that exist in component applications and
how to follow causal information paths through the application. We have paid special attention to
correctly interpreting causal pathways in the application, and to providing dynamic
instrumentation and interception points. We also have proposed two novel forms of contexts,
namely message contexts and request contexts. The solution provides unified fine-grained
instrumentation for both, application analysis and for application management. Finally, we have
provided a comparison to the most important projects in the application analysis and application
management domains respectively.

­­ 49 ­­

C h a p t e r C h a p t e r I VI V

4 Implementation

4.1 Overview
We have developed our meta-application infrastructure using the Fractal Component Model

[Fractal]. Fractal is under constant development and provides all of the functionality required for
implementing our infrastructure. Specifically, we have used the Julia [Julia] implementation of the
Fractal Model. Julia is the reference implementation for Fractal and is written in Java. We have also
used other technologies that are for Fractal and also some technologies that are platform specific to
Java. FScript is a script language that provides functionality for introspecting and reconfiguring
Fractal applications at runtime. It is useful for inserting dynamic tracers and assigning interaction
points for the meta-application. Creating dynamic annotations is particularly time-consuming and
has not been implemented. The solution for the Java platform relies on using a bytecode
manipulation tool [ASM] and JVMTI [JVMTI], a Java tool for code hot-swapping.

The infrastructure is constructed in three basic parts. The first part is the Dynamic Tracer
Manager. This part of the infrastructure performs dynamic application instrumentation. Dynamic
instrumentation is performed using both dynamic tracers and the asynchronous event annotation
toolkit. Tracers are small components that are constructed with two purposes: first, they register
inter-component calls that occur in the application, and second, they control the execution flow in
the application. Controlling execution provides the necessary time to analyze the events in order to
construct the request execution path and also provides an instrumentation point in the application
for interposition and meta-application interactions. The annotation toolkit provides information
regarding inter-thread communication in order to deduct request execution paths and to perform
context operations. The second part of the infrastructure, the Request Tracker, constructs the
request execution path and performs context related operations. These operations include
duplicating contexts, aggregating contexts and creating new context references. The final part of
the application, the Callback Manager provides the meta-application functionality. It is charged
with executing callbacks at interception points. These parts are coordinated using the
Administrator component. Its purpose is to handle events between different subsections,
provide requests to exterior request consumers, and to associate Tracers to Callbacks.

­­ 51 ­­

Figure 14: Conceptual view of the implementation.
The figure provides insight on the activities performed by each subsection of the infrastructure. The Trace Manager
instruments the application using dynamic tracers. The Request Tracker analyzes events that occur in order to
construct request paths and handle contexts. The Callback Manager provides interaction points for meta-
application functionality. The Meta-application Administrator directs the whole application, manages tracer –
callback relationships, provides external applications with profiling and workload information.

In section 4.2 we present the context in which we have implemented our infrastructure. We
have chosen the Fractal Component Model. We explain Fractal and provide an introduction to its
reference implementation, Julia. Also, we give an introduction to FScript. In section 4.3 we present
the architecture we have designed for the meta-application infrastructure. It is divided into three
different architectural elements. They are all coordinated using an Administrator component.
The first part explains application instrumentation using dynamic tracers and annotations. The
second is charged with constructing the request execution path and handling contexts by
interpreting the events produced from the instrumentation. The last part explains how we provide
interaction points using Callbacks for meta-applications constructed using the architecture.

4.2 Implementation Context

4.2.1 Fractal Component Model
Fractal [Fractal] is a modular and extensible component model that can be used with various

programming languages to design, implement, deploy and reconfigure various systems and
applications, from operating systems to middleware platforms and to graphical user interfaces.
Fractal is also a project with several sub projects, dealing with the definition of the model, its
implementations, and the implementation of reusable components and tools on top of it.

The Fractal component model heavily uses the separation of concerns design principle. The idea
of this principle is to separate into distinct pieces of code or runtime entities the various concerns or
aspects of an application: implementing the service provided by the application, but also making
the application configurable, secure, available, ... In particular, the Fractal component model uses
three specific cases of the separation of concerns principle: namely separation of interface and
implementation, component oriented programming, and inversion of control. The first pattern, also

­­ 52 ­­

M
e
t
a
­
A
p
p
l
i
c
a
t
i
o
n

T1 T2

T2 Tn

Trace
Administrator

Trace Pool

Lo
gTrace

Logger Trace Manager
Trace
Creator

Request Analyzer Request Recorder

Context Handler

Request Manager

Request Tracker

C1

C3 Cn

Callback
Administrator

Callback Pool

L
o
gCallback

Creator
Callback
Logger

Callback Manager

C2

Meta­Application Manager

 A
d
m
i
n
i
s
t
r
a
t
o
r

C2

C1

C3
C5 C9
C8

C7

C4

C

D

E

A

B

Thread creator

Message queue
Dynamic tracer / proxy

Security
QoS

Priority

CONCEPTUALCONCEPTUAL
VIEWVIEW

called the bridge pattern, corresponds to the separation of the design and implementation concerns.
The second pattern corresponds to the separation of the implementation concern into several
composable, smaller concerns, implemented in well separated entities called components. The last
pattern corresponds to the separation of the functional and configuration concerns: instead of
finding and configuring themselves the components and resources they need, Fractal components
are configured and deployed by an external, separated entity.

The main goals of the Fractal component model are
to implement, deploy and manage (i.e. monitor and
dynamically reconfigure) complex software systems.
These goals motivate the main features of the Fractal
model: composite components (to have a uniform view
of applications at various abstraction levels), shared
components (to model resources), introspection
capabilities (to monitor a running system), and
configuration and reconfiguration capabilities (to
deploy and dynamically reconfigure an application).
But another goal of the Fractal model is to be

applicable to many software, from embedded software to application servers and information
systems. Unfortunately, the advanced features of the Fractal model have a cost that is not always
compatible with the limited resources of constrained environments.

4.2.1.1 External component structure
Depending on the level of observation, or scale, a Fractal component can be seen as a black box

or as a white box. When seen as black box, i.e. when its internal organization is not visible, the
only visible details of a Fractal component are some access points to this black box, called its
external interfaces (see Figure 15). In order to invoke operations on a component interface, one
must first identify the interface to be called, and then get an access to this interface. In order to
access the interface a binding must be established to this interface. Each interface has a name, in
order to distinguish it from the other interfaces of the component. One may distinguish two kinds
of interfaces: a client (or required) interface emits operation invocations, while a server (or
provided) interface receives them.

4.2.1.2 Internal component structure
At the next level of control capability,

beyond the "introspection" level where
components provide interfaces to introspect
their external features, a Fractal component
can provide control interfaces to introspect
and reconfigure its internal features.
Internally, a Fractal component is formed out
of two parts: a controller (also called
membrane), and a content (see Figure 16). The
content of a component is composed of other
components, called sub components, which
are under the control of the controller of the
enclosing component. The Fractal model is thus recursive and allows components to be nested at an
arbitrary level. A component that exposes its content is called a composite component. A

­­ 53 ­­

Figure 15: External view of a Fractal component.

Figure 16: Internal view of a Fractal component.

component that does not expose its content, but has at least one control interface is called a
primitive component. A component without any control interface is called a base component.

The controller of a component can have
external and internal interfaces. External
interfaces are accessible from outside the
component, while internal interfaces are
accessible only from the component's sub
components. A functional interface is an
interface that corresponds to a provided or
required functionality of a component, while
a control interface is a server interface that
corresponds to a "non functional aspect",
such as introspection, configuration or
reconfiguration, and so on.

A component may appear in the content
of (be shared by) several distinct enclosing
components (see Figure 17). A component

that is shared among two or more distinct components is subject to the control of their respective
controllers. The exact semantics of the resulting configuration (e.g. which control behavior is
enacted) is in general determined by an encompassing component that encloses all the relevant
components in the configuration.

4.2.1.3 Reconfiguration
Reconfigurations can involve removing a component and replacing it with a new one, adding or

removing components. All these operations can be performed dynamically (i.e. while the
application is executing). For example, let's say we want to dynamically change a component. In
order to do this we need to unbind all of its bindings (i.e. client and server bindings). These
unbindings cannot occur unless the component and its parent composite-component are stopped.
The new component that will replace this one must be created and added to the same composite
component. The old component must be removed. The former bindings that had been undone must
be redone with the new component. All stopped components must be restarted. The application can
now run with the new component.

4.2.2 Julia, implementation of the Fractal Component Model
Julia [Julia] is the reference implementation of the Fractal component model. Julia is written in

Java and is fully compliant with the Fractal Specification. Julia has been designed to be a
lightweight and efficient implementation of these specifications. The design choices which have
been made aim at reducing the memory footprint and the runtime overhead of Fractal components
developed with Julia. Julia is a highly configurable framework which allows creating many
different forms of Fractal components. These forms vary depending on the control semantics
associated to the component. Julia provides a set of predefined control semantics for frequently
used components (e.g. primitive, composite) and allows developers to incorporate their own forms.
These forms may redefine or customize any aspect of the control semantics such as lifecycle
management, binding creation, naming policies or any other kind of technical service one may
want to attach to a Fractal component. Julia uses the ASM [ASM] bytecode engineering library for
constructing at runtime a Fractal component instance. ASM is used in many different situations:

• to generate interceptor and Fractal interface instances,

­­ 54 ­­

Figure 17: Advantages of shared components

• to perform optimizations such as merge strategies for reducing memory footprint

• to modularize the writing of control classes with a mixin algorithm which generates the
bytecode of a class from several different layers developed independently.

Since version 2.5, Julia provides the notion of a component-based control membrane. The idea is
to define the control semantics of a Fractal component with the assembling of other so-called
control components. These control component are themselves Fractal compliant (they implement
the Fractal API) and their assembling is described with Fractal ADL. This feature is described in
Section 9 of the Julia API documentation.

4.2.3 FScript for Safe Dynamic Reconfigurations
The Fractal APIs provide dynamic discovery and reconfiguration operations, however, with

certain drawbacks. The Fractal APIs are minimalist and orthogonal, causing code to be verbose and
not very readable. Since Fractal introduces new concepts that are not implemented in the host
language (e.g. components, bindings), and other concepts that are used differently (e.g. interfaces),
developers may be confused. Furthermore, in the case of Fractal implemented in Java, Java is a
general purpose language and does not provide guarantees when executing Fractal reconfiguration
code. Such guarantees could be insuring that data structures are not corrupted, calling dangerous
methods, or simply looping forever. To overcome these limitations and retain Fractal's advantages,
a new Domain Specific Language has been implemented, namely FScript [David, 2006]. The
language is used for navigating inside Fractal architectures and dynamically reconfiguring them.
FScript uses a special notation called FPath [David, 2006] to navigate intuitively inside an
architecture and select parts of it. FScript has been implemented as a simple interpreter, that can be
embedded inside Fractal applications.

FPath is a special notation used inside the FScript language to navigate inside Fractal
architectures and select elements in it according to some predicate. Its syntax and execution model
are inspired by the XPath language which solves the same problem on XML documents (although
FPath does not use XML). FPath sees a given Fractal architecture as an oriented graph with labeled
arcs. Different kinds of nodes represent all the architectural elements reified: the components
themselves, component interfaces (both external and internal), configuration attributes
corresponding to getter/setter methods, and finally methods on the interfaces. These nodes are
connected by labeled arcs, which denote the kind of relation between them. The following types of
arcs, called axes are defined in FPath:

• component: from any kind of node to the component owning this node;
• attribute: from a component node to all its configuration attributes;
• interface: from a component node to all its interfaces, and from a method node to the

interface of which it is part;
• method: from an interface to all its methods;
• binding: from an client interface node to the server interface it is bound to, if any;
• child (resp. parent): from a component to its direct children (resp. parents);
• sibling: from a component to all the other components which have at least one direct

super-component in common with it;
• descendant (resp. ancestor): from a component to all its direct and indirect children

(resp. parents). descendant (resp. ancestor) is thus the transitive closure of child
(resp. parent).

­­ 55 ­­

FPath expressions denote relative paths starting from an initial (set of) node(s) in the graph.
Such a path is made of a series of steps, each made of up to three elements:
axis::test[predicate] (the predicate is optional). On each step, an initial set of nodes is
converted to a new set by following all the arcs with a label corresponding to the axis, then
filtering the result using the test (on the node names) and optional predicates (boolean expressions
applied to each candidate). For a multi-step path, this algorithm is repeated with the result of the
previous step as the current node-set of the next.

For example, sibling::*/interface::*[provided(.)][not(bound(.))] is made
of two steps. The first one uses the sibling axis, an "empty" test * (which is always true) and has
no predicate. The second step uses the interface axis, no test either, and two predicates which
are combined. Inside the predicates, the dot "." represents the current node on which the predicate
is evaluated. Evaluating the complete expression starting from an initial component node will:

1. select all its sibling components, however they are named;
2. select all the external interfaces of these siblings;
3. filter this set of interfaces to return only server interfaces (provided()) which are not
already bound.

4.2.4 FScript Reconfigurations
The preceding section described the FPath notation which is used to navigate inside a Fractal

architecture and select parts of it, but cannot modify the architecture. The complete FScript
language, of which FPath is just a part, enables the definition of reconfiguration actions to apply
to a running application. FScript is a simple imperative/procedural language whose main features
are:

• direct syntaxic support for navigation in Fractal architectures thanks to FPath;
• safety guarantees on the application of the reconfigurations;
• a very dynamic implementation which does not impose a compilation phase and can be

easily embedded into existing applications, where reconfiguration scripts can then be
dynamically loaded and executed.

FScript distinguishes two kinds of procedures: functions and actions. Functions are guaranteed
to be side-effect free, and can only introspect an architecture, not modify it. They can be used
safely inside FPath requests, for example in the predicates. Functions are defined like actions,
expect that they use the function keyword instead of action, and can only invoke other
functions, not actions (be they primitive or user defined). FScript provides a standard library of
primitive functions and actions which gives the user access to all the information available from
the Fractal API, and all the standard reconfigurations.

FScript's design and implementation guarantee the consistency of reconfigurations. Because
these reconfigurations are applied to running applications, it must be guaranteed that they will not
break the target system. To this end, they have chosen a set of consistency criterion, in particular
transactional integrity (atomicity, consistency of the final state, isolation) and termination of the
reconfigurations. The validation of these criteria is guaranteed in part by the language's structure
itself, whose expressive power has been limited, and in part by the implementation.

­­ 56 ­­

4.3 Application management infrastructure

Figure 18: Meta-application infrastructure
The infrastructure shows the separation of the phases required for implementing the meta-application
infrastructure. It is composed of the Trace manager, the Request Tracker and the Callback Manager. All
events pass through the Meta-application Administrator, which performs associations between tracers and
callbacks, filters unwanted events, and passes events though the system.

We present our meta-application infrastructure (see Figure 18). It has been created using the
Fractal component model. It instruments the application and provides meta-application and
profiling functionality for Fractal component applications. The architecture is divided into three
basic parts. The first part is the Trace Manager, which creates and inserts dynamic tracers into
applications. The second part is the Request Tracker, that analyzes events provided from
application instrumentation. The third part is the Callback Manager, which implements the
meta-application functionality specified by the user. These three parts will be presented in detail.

­­ 57 ­­

M
e
t
a
­
A
p
p
l
i
c
a
t
i
o
n

T1 T2

T2 Tn

Trace
Administrator

Trace Pool

Lo
gTrace

Logger Trace Manager
Trace

Creator

Request Analyzer Request Recorder

Context Handler

Request Manager

Request Tracker

C1

C3 Cn

Callback
Administrator

Callback Pool

L
o
gCallback

Creator
Callback
Logger

Callback Manager

C2

Meta­Application Manager

 A
d
m
i
n
i
s
t
r
a
t
o
r

4.3.1 Trace Manager
The Trace Manager performs dynamic application instrumentation. The application is

instrumented using dynamic tracers and the asynchronous event annotation toolkit. The Trace
Manager handles only dynamic tracers. It is composed of several components, a Trace
Administrator, a Trace Logger, a Trace Creator and a Trace Pool. The Trace
Administrator correlates the different components and instruments the application. The Trace
Manager receives a reference to the component to be instrumented. Using FScript, the Trace
Manager performs a search for all bindings in the application. For every binding in the application
a unique and compatible tracer must be created. The Trace Creator is used for this purpose.
Each tracer must implement a server and a client interface compatible with the binding to be
instrumented, in addition to a synchronous event logging interface used for notifying the meta-
application that a call is being performed. Since Fractal applications can be modified dynamically,
there is no way of knowing what interfaces need to be implemented before runtime. Creating
dynamic components with unknown interfaces can be performed in two different ways: using a
bytecode editor [ASM] to create the component, or using Java Reflection and specifically Dynamic
Proxies to imitate a components behavior. We have chosen the second solution because it is a
quicker solution to implement, although Java Reflection generates more overhead and there are
more limitations than the bytecode editor solution. Tracers are a generic component that is
partially created before runtime, and partially created using the Dynamic Proxy API [JavaProxy].
More specifically, a generic tracer exists before execution time, and it is wrapped in a component
wrapper with the necessary client and server interfaces implemented. After the tracer is created,
the components involved are temporarily halted, the binding in the application is unbound, the
tracer component is added to the composite component, the client interface in the application is
bound to the dynamic server interface of the tracer, and the client interface of the tracer is bound to
the server interface of the application. All calls through that binding are now intercepted by the
tracer. All bindings in the application are instrumented in the same fashion and all inter-
component activity is now visible to the meta-application infrastructure.

When a call is intercepted by a dynamic tracer, the tracer notifies the Trace
Administrator. The Trace Administrator uses the Trace Logger for recording the event
so it can be later analyzed if necessary. Then the Trace Administrator notifies the Meta-
application Administrator of the event. Specifically, the information sent provides details
about the tracer that has intercepted the call, the thread ID of the halted thread, and the event that
has occurred (i.e., pre, post or error). The Trace Administrator is then in charge of the event
and will be explained later.

4.3.2 Request Tracker
The Request Tracker receives and analyzes synchronous and asynchronous execution

events in the application, records the execution path of the requests, and also performs context
related operations. The Request Manager handles the analysis of the event and indicates what to
do to the Request Recorder and the Context Handler. In the case of synchronous events, the
handler analyzes the thread ID in question and the nature of the event. If it is a call (i.e. pre), the
Request Recorder is notified to add a new component to the thread execution path in question.
If it is a return (i.e. post) of an open call, the Request Recorder is notified and the call is closed.
If all calls of the thread execution path are closed, then the thread has finished servicing that
request. If all threads have finished servicing the request and no messages or other entities related
to the request are waiting for service, then the request has finished. If the event is an error event,
then the call is closed and the same analysis as before regarding termination of the request is

­­ 58 ­­

performed. Because threads are entities servicing a request and the thread execution path is
already related to the request execution path, adding calls to a thread execution path implies
adding it to the request execution path itself.

Asynchronous events are treated differently because asynchronous links must be created
between thread execution paths and the Context Handler must modify contexts according to the
event. If a thread is created or called from a pool, then the called thread is now dependent of the
caller thread. This forks the request execution path. The Request Recorder is notified and the
open call from the caller thread execution path has an asynchronous link added to it. This
asynchronous link records the details of the event, including the time the event occurs, and it
points to the thread execution path of the dependent thread. The two threads continue execution
and their events continue to be analyzed. The Context Handler must be notified when this
occurs because it associates the called thread to the request contexts of the caller thread, and
it duplicates the message context of the caller thread and associates the duplicated version of
the message context to the called thread. If the event is a message sent, then the open call
of the thread execution path performing the write is added an asynchronous event link. The link is
left open, and will be closed when the message is read or received. The Context Handler is
notified and the request contexts of the writing thread are associated to the message, and the
message context of the writing thread is duplicated and associated to the message. If the event
is a message received, the Request Recorder is notified and the open asynchronous link is closed,
with a link to a newly created thread execution path representing the execution path of the thread
that has read the message. The thread is now associated to the request contexts of the message and
the message context of the message. If the thread already had contexts associated to itself, then the
contexts are added (see 3.5.5 Handling multiple contexts). The message and the associated contexts
are removed from the Context Handler and the Request Recorder. If the event was a message
read, the same actions as for message received are performed, except the message and the contexts
are not removed from the Context Handler or the Request Recorder because the message can be
read by another thread at a later time.

When requests finish, they notify an application using the Request Consumer Interface. They
send the full request execution history, including request statistics (e.g., per component latencies,
request latency, amount of thread execution paths), to the consumer of the event. This provides a
means for performing workload analysis and application profiling.

4.3.3 Callback Manager
The Callback Manager is used for implementing the meta-application functionality

described by the user. For a Callback to be used two elements are required, the interception
points in the application and the callback functionality. The interception points are controlled by
the Trace Administrator. The Callback Manager has no direct knowledge of them. The
Callback Creator creates the Callback component by receiving a Java object that
implements the Callback Interface. The Callback Interface consists of three methods, a
pre, a post and an error. These methods correspond to the events that a tracer produces. The
Callback component is created using the functionality described in the Java object provided by
the user. It is then added to the Callback Pool and assigned an ID. This ID is returned when the
component is created and is later used by the Meta­application Administrator to
associate Callbacks to Tracers. These associations are hidden from the Callback Manager.

When a tracer notifies that a synchronous communication event has occurred, the Meta-
application Administrator decides which Callbacks need to be executed. It send the IDs
of the Callbacks. The ID of the Callback is used to identify it. The Callback

­­ 59 ­­

Administrator receives the petition, it logs the petition using the Callback Logger, and it
executes the required Callback. The Callback can access request contexts and the
message context associated to the thread that was halted by the dynamic tracer. It cannot
access other contexts in the application. A Context Access Interface is required by each
Callback and is provided by the Context Handler. A Callback performs the tasks assigned
by the user and has full access to context modification or consultation. When finished, the call is
closed and control returns. The tracer then permits the thread to continue execution.

4.3.4 Meta­application Administrator
The Meta­application Administrator proxies calls between the different sub-

components of the meta-application, and between sub-components and the exterior. It is used to
isolate cross-component functionality, like interception point – callback associations. This helps
make the the Trace Manager, Request Tracker and Callback Manager less dependent on
each other.

The Meta­application Administrator receives the request to instrument an application.
It notifies the Trace Manager, which then inserts dynamic tracers in the application. For full
application instrumentation the asynchronous event annotations must also be inserted. At the
moment the annotations are not dynamic, and the application is compiled with them. A future
edition of the infrastructure may include an Annotation Manager that, using a bytecode
manipulation toolkit [ASM] it records the placement of the annotations and removes the
annotations from the application either at compile-time or at load-time. When instrumenting the
application, the annotations may be reinserted into the application at runtime using Java code hot-
swapping technologies [JVMTI]. This solution is feasible but requires time to implement. At the
moment the Meta­application Administrator receives the asynchronous events directly.
The Administrator also receives requests for meta-application creation. For each Callback
component in the application, an FPath query and a Java object containing the code for the meta-
application at the specific points specified by the FPath query. The Java object is sent to the
Callback Manager and the Callback is created. The FPath query may contain a single
interface, or a set of interfaces to be instrumented. The Meta­application administrator
performs an analysis of the interfaces and locates the dynamic tracer already instrumenting each
interface. For each dynamic tracer an association with the Callback specified by the user is
made. One callback can be associated to many different dynamic tracers (see 3.6 Callback
infrastructure). After the application is fully instrumented and the meta-application behavior
instantiated, the meta-application infrastructure commences receiving calls (events may occur
before all instrumentation is inserted or before all callbacks are created). A dynamic tracer is
activated and sends an event to the Meta­application Administrator when a call between
two components occurs. The Administrator notifies the Request Tracker and then reads the
list of Callbacks associated to the tracer and sends the ordered list of Callback IDs to the
Callback Manager for execution. When asynchronous events occur, the Administrator is
notified directly. It passes the event to the Request Tracker who performs the necessary tasks.
When a request is finished, the Request Tracker notifies the Administrator. The
Administrator contains a list of request consumers that are interested in finished request
information. The request is duplicated and an individual request execution path is sent to each
consumer through the Request Consumer Interface (messages are duplicated because
components cannot share them).

­­ 60 ­­

4.3.5 Current state and remaining work
In this chapter we have presented our architecture for performing application management.

Currently, we have implemented the asynchronous event annotation toolkit, dynamic tracers,
request tracking and callbacks. The annotation toolkits are not currently dynamic. They have been
implemented as static method calls that are directly inserted into the application's code. We have
implemented request tracking and context propagation, and they correctly interpret synchronous
and asynchronous events. We have also implemented the callbacks. At the moment, we are in the
phase of evaluating the architecture and its feasibility. For these evaluations we require a
component application that can be easily analyzed without our architecture, so we can compare the
results with our expectations. We plan on using the Comanche Web-Server [Comanche], and
extending its functionality, adding asynchronous events and creating different execution paths in
the application. Once Comanche is modified, we can test the overhead from dynamic tracers, the
annotation toolkit, context propagation, request tracking and callbacks (although callback overhead
depends on user specified functionality). We also plan on constructing a profiling and workload
analysis to prove the feasibility and usability of the request consumer interface. If
successful, the interface would provide means for performing online application analysis based on
common instrumentation, thus unifying application management and analysis. To conclude the
initial evaluations of our project, we must provide a method of focusing on points of interest in the
application and discriminating annotations. In case overhead from the application is too high,
discrimination of events could provide a means of overcoming this limit.

­­ 61 ­­

C h a p t e r C h a p t e r VV

5 Conclusion

Summary of the Contribution
Modern applications are more and more complex. Tools for understanding applications are

essential for management and analysis tasks. Currently these tools are lacking and have not kept
pace with tools for developing the applications. Performance problems are hard to diagnose and
constructing accurate models of a system's workload is difficult. Furthermore, software components
intertwine their functional concerns (e.g., their specific job) with their non-functional concerns
(e.g., priority, QoS, security), limiting the reusability of the software components themselves. We
propose unifying application analysis and application management to provide a coherent view of
what currently are disjoint concepts. A solution that unifies application analysis and application
management must be fine-grained, dynamic and produce low-overhead. We have provided such a
unification by means of a generic fine-grained instrumentation infrastructure. We have defined a
common base-granularity that is beneficial for both, application management and application
analysis. We propose requests as the granularity for analysis and management.

Based on the request-granularity, we have presented the necessary techniques and information
for automated request tracking, context propagation and meta-application functionality. We
present dynamic instrumentation in component-based applications by means of dynamic tracers.
We give a thorough analysis of asynchronous communication events that exist in component
applications and how to follow causal information paths through the application. We have paid
special attention to correctly interpreting causal pathways in the application, and to providing
dynamic instrumentation and interception points. We also have proposed two novel forms of
contexts, namely message contexts and request contexts. The solution provides unified fine-
grained instrumentation for both, application analysis and for application management.

Our solution is applicable to all component models that support introspection and dynamic
reconfigurations. Our meta-application infrastructure provides fine-grain interaction points on
every component interface, it is run-time dynamic, and it produces zero overhead when not
enabled. Complementary to existing techniques in application analysis, like performance analysis
or application profiling, we provide a request consumer interface, that can easily feed request
execution paths into external application analysis tools. Our application management infrastructure
has been implemented using the Fractal Component Model. Specifically, we have used the
reference implementation of Fractal, Julia.

­­ 63 ­­

Future work
Due to lack of time, the quantitative evaluation (i.e., overhead measurements) remains to be

done on realistic applications. We intend to fully quantify and minimize the overhead produced by
our application. If overhead is low enough the solution should be feasible for production
environments. We plan on extending the functionality of our infrastructure to interact with
multiple component applications simultaneously, and on analyzing how to propagate contexts
across multiple applications and across networks. Some existing solutions provide grouping
metadata into TCP/IP packets for network transmission, but this limits the amount of metadata that
can be sent.

We also plan to use a domain specific language (DSL) to improve user interaction with the
application. This language must be capable of controlling dynamic tracer insertion and the
granularity of the analysis, providing analysis in specific points of interest. It must select which
annotations are to be analyzed and which dynamic tracers to be deployed, thus avoiding the cost
and overhead of analyzing non desirable annotations and portions of the application. Also, the
language must be capable of specifying callback interaction points and of defining callback
functionality, fully extracting the meta-application behavior from the application under study.
Extra benefits to the language could be guaranteeing safe execution, by using a bytecode
interpreter.

­­ 64 ­­

B i b l i o g r a p h yB i b l i o g r a p h y
[Aguilera et al.,2003] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and A.

Muthitacharoen. Performance debugging for distributed systems of
black boxes. In Proceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP'03), 2003

[ASM] http://asm.objectweb.org/

[Barham et al., 2003] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan. Magpie: online
modelling and performance-aware systems. 9th Workshop on Hot
Topics in Operating Systems (HotOS IX), 2003

[Bellard] F. Bellard. Qemu: Open source processor emulator.
http://fabrice.bellard.free.fr/qemu/about.html, 2007

[Bershad et al., 1995] Brian Bershad, Stefan Savage, Przemyslaw Pardyak, Emin Gun Sirer,
David Becker, Marc Fiuczynski, Craig Chambers, and Susan Eggers.
Extensibility, safety and performance in the SPIN operating system.
In Proceedings of the 15th ACM Symposium on Operating System
Principles, 1995

[Cantrill et al., 2004] Bryan M. Cantrill, Michael W. Shapiro and Adam H. Leventhal.
DTrace: Dynamic Instrumentation of Production Systems. USENIX
Annual Technical Conference, 2004

[Chanda et al., 2007] Anupam Chanda, Alan Cox and Willy Zwaenepoel. Whodunit:
transactional profiling for multi-tier applications. Eurosys, 2007

[Chanda et. al, 2005] Anupam Chanda, Khaled Elmeleegy, and Alan L. Cox. Causeway:
Operating System Support For Controlling And Analyzing The
Execution Of Distributed Programs. Proceedings of the
ACM/IFIP/USENIX 6th International Middleware Conference, 2005

[Chen et al., 2002] M. Chen, E. Kiciman, E. Fratkin, E. Brewer, and A. Fox. Pinpoint:
Problem determination in large, dynamic, Internet services.
International Conference on Dependable Systems and Networks,
2002

[Comanche] http://fractal.objectweb.org/tutorial/index.html

­­ 65 ­­

[David, 2006] Pierre-Charles David. Safe Dynamic Reconfigurations of Fractal
Architectures with FScript. The 5th Fractal Workshop at ECOOP,
2006

[Eclipse] http://www.eclipse.org/

[Fractal] http://fractal.objectweb.org/

[GDB] http://sourceware.org/gdb/

[Gunter, 2005] Daniel K. Gunter and Brian L. Tierney. Scalable Analysis of
Distributed Workflow Traces. International Conference on Parallel
and Distributed Processing Techniques and Applications
(PDPTA'05), 2005

[Hastings et al., 1992] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks and
access errors. Proceedings of the Winter USENIX Conference, 1992

[Hrishchuk et al., 1995] Curtis E. Hrischuk and Jerome A. Rolia and C. Murray Woodside.
Automatic Generation of a Software Performance Model Using an
Object-Oriented Prototype. In Proc. MASCOTS, 1995

[Isaacs et al., 2005] Rebecca Isaacs, Paul Barham, James Bulpin, Richard Mortier, and
Dushyanth Narayanan. Request extraction in Magpie: events,
schemas and temporal joins. 11th ACM SIGOPS European
Workshop, 2005

[JavaProxy] http://java.sun.com/j2se/1.5.0/docs/api/java/lang/reflect/Proxy.html

[Julia] http://fractal.objectweb.org/julia/

[JVMTI] http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/jvmti.html

[Kiczales et al., 2001] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kirsten, Jeffrey
Palm, and William G. Griswold. An overview of AspectJ. In
Proceedings of the 15th European Conference on Object-Oriented
Programming, 2001

[Log4j] http://logging.apache.org/log4j/docs/index.html

[Miller, 1984] Barton P. Miller. A Distributed Programs Monitor for Berkeley
UNIX. University of California at Berkeley, 1984

[Moore, 2001] Richard J. Moore. DProbes: A universal dynamic trace for Linux and
other operating systems. Proceedings of the FREENIX Track,
USENIX Tech, 2001

[Olszewski et al., 2007] Marek Olszewski, Keir Mierle, Adam Czajkowski, Angela Demke
Brown. JIT instrumentation: a novel approach to dynamically
instrument operating systems. Eurosys, 2007

[Prasad et al., 2005] Vara Prasad, William Cohen, Frank Ch. Eigler, Martin Hunt, Jim
Keniston and Brad Chen. Locating System Problems Using Dynamic
Instrumentation. Linux Symposium, 2005

­­ 66 ­­

[Qie, 2002] Xiaohu Qie, Ruoming Pang and Larry Peterson. Defensive
programming: using an annotation toolkit to build DoS-resistant
software. OSDi, 2002

[Reumann et al., 2004] J. Reumann and K. G. Shin. Stateful Distributed Interposition. ACM
Transactions on Computer Systems, 2004

[Schiavoni, 2006] Valerio Schiavoni and Vivien Quema. A posteriori defensive
programming: an annotation toolkit for DoS-resistant component-
based architectures. Proceedings of the 2006 ACM symposium on
Applied computing, 2006

[Seltzer et al., 1996] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith. VINO: Dealing with
disaster, surviving misbehaved kernel extensions. Proceedings of the
Second Symposium on Operating Systems Design and
Implementation, 1996

[Srivastava et al., 1994] Amitabh Srivastava and Alan Eustace. ATOM: A system for
building customized program analysis tools. Proceedings of the ACM
Symposium on Programming Languages Design and
Implementation, 1994

[Tamches et al., 1999] Ariel Tamches and Barton P. Miller. Kerninst: fine-grained dynamic
instrumentation of commodity operating system kernels.
Proceedings of the Third Symposium on Operating Systems Design
and Implementation, 1999

[Wisniewski et al., 2003] Robert W. Wisniewski and Bryan Rosenburg. K42: efficient, unified,
and scalable performance monitoring for multiprocessor operating
systems. In SC'2003 Conference CD, 2003

[Yaghmour et al., 2000] Karim Yaghmour and Michel R. Dagenais. Linux Trace Toolkit
(LTT): Measuring and characterizing system behavior using kernel-
level event logging. Proceedings of the 2000 USENIX Annual
Technical Conference, 2000

­­ 67 ­­

	1Introduction
	2State of the Art
	2.1Overview
	2.2Application Analysis
	2.2.1Overview
	2.2.2Software Tracing (DTrace)
	2.2.2.1Detailed description of DTrace
	2.2.2.2Instrumentation Techniques
	2.2.2.3Interacting with the DTrace Framework
	2.2.2.4Other application instrumentation projects similar to DTrace

	2.2.3Dynamic Translation
	2.2.4Workload Analysis
	2.2.5Statistical workload analysis (Project 5)
	2.2.5.1Approach
	2.2.5.2Nesting algorithm VS. Convolution algorithm
	2.2.5.3Obtaining traces

	2.2.6Deterministic workload analysis (Magpie)

	2.3Application Management
	2.3.1Overview
	2.3.2Meta-applications and Metadata propagation
	2.3.3Causeway
	2.3.3.1Managing Metadata
	2.3.3.2Meta-application interaction points
	2.3.3.3Propagating metadata

	2.3.4Annotation Toolkits
	2.3.4.1Denial of Service (DoS)
	2.3.4.2Inter-code annotations
	2.3.4.3External annotations

	2.4Summary of the State of the art
	2.4.1Project summaries
	2.4.1.1DTrace
	2.4.1.2Project5
	2.4.1.3Magpie
	2.4.1.4Causeway
	2.4.1.5Defensive Programming Toolkits

	2.5Remaining issues

	3Details of the Contribution
	3.1Overview
	3.2Synchronous interaction
	3.3Asynchronous interaction
	3.3.1Overview
	3.3.2Defining annotations
	3.3.3Proposed annotations
	3.3.3.1Thread creation and thread pools
	3.3.3.2Message Passing
	3.3.3.3Data Streams and Files
	3.3.3.4Independent execution

	3.4Request tracking
	3.4.1Overview
	3.4.2Request execution paths
	3.4.3Modifying request tracking granularity
	3.4.4Request consumer mechanism

	3.5Context propagation
	3.5.1Overview
	3.5.2Metadata key-value pairs
	3.5.3Request context (global context)
	3.5.4Message context (local context)
	3.5.5Handling multiple contexts

	3.6Callback infrastructure
	3.6.1Overview
	3.6.2Callback components
	3.6.3Defining callback interaction points

	3.7Profiling
	3.8Comparison to other projects
	3.8.1Comparison with DTrace
	3.8.2Comparison with Project5
	3.8.3Comparison with Magpie
	3.8.4Comparison with Causeway
	3.8.5Comparison with Defensive Programming
	3.8.6Comparison with A Posteriori Defensive Programming

	3.9Summary

	4Implementation
	4.1Overview
	4.2Implementation Context
	4.2.1Fractal Component Model
	4.2.1.1External component structure
	4.2.1.2Internal component structure
	4.2.1.3Reconfiguration

	4.2.2Julia, implementation of the Fractal Component Model
	4.2.3FScript for Safe Dynamic Reconfigurations
	4.2.4FScript Reconfigurations

	4.3Application management infrastructure
	4.3.1Trace Manager
	4.3.2Request Tracker
	4.3.3Callback Manager
	4.3.4Meta-application Administrator
	4.3.5Current state and remaining work

	5Conclusion

