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Abstract

Applications are becoming more and more complex. Tools that provide support for 
both, application analysis (e.g., profiling, workload analysis, software tracing) and 
application management,  which are applications used to administer and control 
other applications (e.g., meta-applications, interposition tools, context propagation), 
are  essential  for  modern  applications.  These  two  subjects,  analysis  and 
management,  have traditionally been considered separate,  but they rely on the 
same basis:  application instrumentation.  We unify application management and 
application  analysis  by  providing  fine-grained,  dynamic  instrumentation  for 
component-based  applications.  Component  models  provide  a  well  defined 
architecture,   introspection  and  reconfiguration  capabilities,  that  we utilize  for 
instrumenting the application. We propose  Requests as the base granularity for 
instrumentation. Moreover, we have proposed a novel  application management 
infrastructure (i.e., meta-application infrastructure) that uses requests as its base 
granularity  and  provides  two  novel  types  of  metadata,  request contexts and 
message contexts.  The  infrastructure  has  been  developed  using  the  Fractal 
Component Model, and implemented in its reference implementation, Julia.

Keywords: application  analysis,  application  management,  meta-applications, 
context  propagation,  request,  request  tracking,  profiling,  workload  analysis, 
component-based applications.





Résumé

Les  applications  modernes  deviennent  de  plus  en  plus  complexes.  Des
outils  ont  été  développés  pour  les  analyser  (traçage  de  ressources,
caractérisation  de  charge,  ...)  et  les  administrer  (construction  de
méta-applications,  propagation  de  contextes,  ...).  Ces  outils  ont
jusqu'à  présent  été  considérés  indépendant  et  ne  partagent  ainsi  pas  de
briques  de  base  communes.  Néanmoins,  il  apparaît  que  ces  deux  types
d'outils  nécessitent  l'utilisation  de  techniques  d'instrumentation.  Dans
le  travail  présenté  dans  ce  rapport,  nous  avons  étudié  la  possibilité
d'unifier  les  outils  d'analyse  et  d'administration  d'applications.  Pour
ce  faire,  nous  proposons  d'utiliser  comme  base  de  ces  outils  une
technique  d'instrumentation  dynamique  à  grain  fin.  Cette  technique
fonctionne  sur  les  applications  développées  à  l'aide  de  modèles  de
composants.  L'intérêt  d'utiliser  de  tels  modèles  est  qu'ils  fournissent
des  moyens  pour  introspecter  et  reconfigurer  dynamiquement  les
applications,  ce  qui  est  une  aide  au  développement  de  techniques
d'instrumentation.  Nous  présentons  également,  dans  ce  rapport,  une
infrastructure  d'administration  reposant  sur  les  techniques
d'instrumentation  précédemment  citées.  L'administration  se  fait  à  la
granularité  de  la  requête  (de  façon  similaire  à  ce  qui  est  fait  dans  les
serveurs  Web).  Cette  infrastructure  a  été  développée  à  l'aide  du  modèle
de composants Fractal.

Mots  clés: analyse  d'applications,  administration  d'applications,
méta-applications,  propagation  de  contexte,  requêtes,  traçage  de
requêtes, caractérisation de charge, applications à base de composants.
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C h a p t e r  C h a p t e r   II

1 Introduction
Modern applications are becoming more and more complicated and are commonly composed of 

hundreds of thousands of lines of code or are even in the millions of lines of code. This poses 
numerous challenges. Among them, we are interested in two, analyzing applications and managing 
them. Application analysis are the techniques used to study an application – its internal behavior, 
its  external  interactions,  etc.  It  consists  of  a  series  of  techniques  like  profiling,  performance 
debugging, and workload analysis. Application management has different objectives. It attempts 
to separate the functionality of the application from how the internal software components interact 
and are used, by providing a means of controlling and administering the application. It rests on 
techniques like context propagation, meta-applications and interposition.

Application  analysis  and application  management  are  currently  considered  separate. 
Consequently, existing solutions for application analysis and application management have created 
diversification  in  the  way  a  developer  understands  the  application  and  the  way  he  actually 
interacts with it.  More precisely, developers and application designers are forced to bridge the 
conceptual gaps between the different application analysis tools and application management tools 
because their relationships are not explicit nor clear. This comes from the fact that these tools do 
not  share  common  base-concepts.  This  is  particularly  true  for  application  instrumentation 
techniques,  that  are  at  the  heart  of  both  analysis  and  management  tools.  Instrumentation 
techniques used for application analysis are fine grain and do not only focus on inducing low-
overhead, but also on becoming runtime dynamic. On the other hand, instrumentation techniques 
used  for  application  management  have  focused  on  supporting  legacy applications  and  are, 
consequently, coarse grain. Moreover, instrumentation is static, due to the fact that the application 
source  code  is  not  supposed  to  be  available.  Consequently,  instrumentation  for  managing 
applications requires the modification of the context in which applications execute  in order to 
intercept inter-application calls, operating system calls, and library calls. This large granularity of 
interaction between the application and the management tools have limited their use.

In  the work presented in this  report,  we have studied the unification of  the analysis  and 
management functions. Our goal is to build an application management infrastructure that benefits 
from the techniques developed in application analysis environments. To that end, we, first of all 
propose a unification of the underlying application instrumentation technique. Instrumentation 
must provide a granularity that is useful to analysis and management tools alike. This means that 
application instrumentation must be fine-grained and provide interaction points in the application, 
where a developer needs and expects them. Unified instrumentation is the first step, but it is not 
enough, because the information obtained must provide an entity of abstraction that is not-only 
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beneficial to the tools, but must also be understandable by the developer, providing a means of 
quickly and easily relating all the inter-tool concepts, and a means of eliminating the conceptual 
gaps. We propose to use Requests as the granularity for interpreting application activity. A request 
is a single message sent to a software component for service. Requests can be split into smaller 
tasks and serviced  by different  software components simultaneously.  One component  may be 
servicing various tasks from different requests at the same time. These events must be analyzed so 
the request, as its own entity, can be constructed and used for analysis and management. We are 
not the first to propose requests. A  request-based granularity for understanding workloads has 
already been proposed for web-servers. We extend the use of requests for analyzing activity in all 
applications, not only web-servers.

The the document is composed of five chapters.  Chapter I Is the introduction we have just 
presented.  Chapter II is a synthesis of the state of the art, concluding with a summary of the 
projects and the remaining issues that have not been addressed prior to this work.  Chapter III 
details our contribution in the unification of application analysis and application management. 
Chapter IV shows an implementation of our infrastructure. Finally,  Chapter V of this document 
shows our conclusions, including a summary of contributions and future work.
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C h a p t e r  C h a p t e r   I II I

2 State of the Art

2.1 Overview
During the development of our project, we have studied areas of computer science that have 

commonly been considered distinct. Our solution provides a base for unifying these subjects. The 
subjects  are:  application analysis  and  application management.  This  chapter  gives  us  an 
introduction  to  existing  solutions  in  the  domains  of  application  analysis  and  application 
management.  Special  attention  should  be  paid  to  understand  the  underlying  instrumentation 
techniques used by all of these projects. Some are limited to passive analysis while others are 
disruptive  to  the  applications  behavior  but  provide  a  more  thorough  analysis.  Application 
instrumentation is  the basis  for both analysis  and management and provides the grounds for 
unifying them.

Instrumentation refers to the techniques to monitor or measure the level of performance, to 
diagnose errors and to write trace information from applications. Instrumentation is in the form of 
code instructions that monitor specific components in a system (for example, instructions that 
output logging information). Instrumentation is necessary to review the health and performance of 
the application. In general, instrumentation approaches can be of two types, source instrumentation 
and binary instrumentation. Instrumentation is the ability to incorporate tracing code, debugging 
code,  exception handling code,  performance counters and event  logs  into  an application.  Our 
interest is particularly focused on the ability to insert tracing code into applications and to provide 
interposition points. Tracing code serves the purpose of retrieving informative messages about the 
execution of an application at runtime. Interposition enables execution of external code at specific 
points in the application.

In section 2.2 we explain application analysis projects. We analyze the different approaches for 
instrumentation they use focusing on projects that have provided advances and novel techniques in 
the domain. We also take a view at application profiling, workload analysis and request tracking, 
which  are  techniques  used  for  application  analysis.  In  section  2.3 we  explain  application 
management. Application management refers to the main techniques used for interposition and 
meta-application construction. We explain the approach taken for instrumenting the applications 
and also how meta-applications are constructed.
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2.2 Application Analysis

2.2.1 Overview
Application analysis refers to the techniques used to  analyze and interpret an applications 

behavior. These techniques are varied, but all  rely on application instrumentation. Among the 
techniques used, we will analyze projects in the domains of software tracing, dynamic translation, 
workload analysis, and application profiling. There are differences between the techniques, but 
many of the base concepts are the same, making some solutions appear to be a mix of different 
techniques.

In section 2.2.2 we will explain DTrace, a novel solution to software tracing. In section 2.2.3 we 
give the basic basic concepts and uses of dynamic translation in order to understand modern 
bytecode  instrumentation  techniques.  In  section  2.2.4 we will  explain  workload analysis  and 
profiling. In this domain, we will analyze two different approaches, Project 5, which is statistical 
analysis  using  passive tracing that  provides general  information on application causality,  and 
Magpie, which performs deterministic request tracking and provides performance modeling.

2.2.2 Software Tracing (DTrace)
Software  tracing  is  a  specialized  use  of  logging  to  record  information  about  a  program's 

execution.  This  information  is  typically  used  by  programmers  for  debugging  purposes,  and 
additionally,  depending  on  the  type  and  detail  of  information  contained  in  a  trace  log,  by 
experienced system administrators or technical support personnel to diagnose common problems 
with software. Tracing is a cross-cutting concern. Although there exist many projects on software 
tracing, the most notable to mention at the moment is Dynamic Instrumentation of Production 
Systems (DTrace)[Cantrill et al., 2004]. DTrace is a dynamic instrumentation system that unifies 
both user-level and kernel-level software in an absolutely safe fashion. We will introduce DTrace 
and provide a short reference to other projects in the software tracing domain. 

Dynamic Instrumentation of Production Systems (DTrace)[Cantrill et al., 2004] emerges because 
performance  analysis  infrastructures  have  not  kept  pace  with  the  shift  to  in-production 
performance analysis. Analysis infrastructures are still focused on the developer, on development 
systems, or both. They have rarely shifted to production systems. This causes problems because 
development systems differ from production ones, and it is a complicated task to replicate in-
production  systemic  problems  on  development  systems.  In  order  to  be  a  viable  tracing 
infrastructure in production systems, the performance analysis infrastructure must have zero probe 
effect when disabled, and must be absolutely safe when enabled. Zero overhead when not enabled 
is  key  because  production  systems  aim  at  maximizing  resource  utilization,  especially  since 
resources represent investment. Of course it  is necessary also to minimize the overhead when 
enabled as to limit interference caused by the tracing infrastructure. Complete safety insures that 
executing the analysis infrastructure puts no danger to applications currently in execution.

DTrace has been integrated into the Solaris operating system and has been used to find serious 
systemic performance problems on production systems – problems that could not be found using 
preexisting facilities. In order to achieve its goal of dynamically instrumenting both user-level and 
kernel-level software in a unified and absolutely safe fashion, DTrace has developed a C-like high-
level control language dubbed D for user friendly tracing. Some of the properties of the DTrace 
solution are:
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• Dynamic instrumentation – when not in use it generates no overhead

• Unified instrumentation – user and kernel level software can be instrumented

• Arbitrary-context  kernel  instrumentation  –  virtually  all  of  the  kernel  can  be 
instrumented

• Data integrity – guarantees are provided on data integrity. Data is not lost nor altered.

• Arbitrary  actions  –  the  user  can  enable  any  probe  with  any  action  and  safety  is 
guaranteed

• Predicates – are used to record only necessary information

• A high-level control language – C-like language dubbed “D”  

• A scalable mechanism for aggregating data – users may aggregate by virtually anything

• Speculative tracing – deferring the decision to commit or discard the data to a later time

• Heterogeneous instrumentation – Instrumentation providers are formally separated from 
the  probe processing  framework by a  well-specified  API,  making it  possible  to  use 
different instrumentation methodologies

• Scalable architecture – DTrace allows many tens of thousands of instrumentation points 
and provides primitives for subsets of probes to be efficiently selected and enabled

• Virtualized consumers – Multiple consumers can enable the same probe in different ways 
and there is no limit on the number of concurrent DTrace consumers

2.2.2.1 Detailed description of DTrace
The core of the DTrace infrastructure resides in the kernel. Processes become DTrace consumers 

by initiating communication with the in-kernel DTrace component via the DTrace library. The 
DTrace framework itself  performs no instrumentation of  the system;  the task  is  delegated to 
instrumentation providers. For every point of instrumentation, providers call back into the DTrace 
framework to create a probe. Providers must specify the module name and function name of the 
instrumentation point, plus a semantic name for each probe. The probe identifier then consists of a 
tuple of 4 elements,  <provider, module, function, name>, thus each probe is uniquely 
identified. Probe creation itself does not instrument the system, it simply identifies a potential for 
instrumentation to the DTrace framework. When a provider creates a probe, DTrace returns a 
probe identifier. Probes are then advertised to consumers, who can enable them by specifying any 
element of the 4-tuple. When a probe is enabled, an enabling control block (ECB) is created and 
associated with the probe. If there are no other ECBs associated with the probe (that is, if the probe 
is disabled), the DTrace framework calls the probe's provider to enable the probe. When a probe 
fires, that is, execution reaches the inserted and enabled probe, control is passed to the DTrace 
framework. DTrace makes no constraints as to the context of a firing. In order to assure safety from 
the DTrace framework, DTrace itself is non-blocking and makes no explicit or implicit calls into the 
kernel-under-study.

When the probe fires and control is transferred to the DTrace framework, interrupts are disabled 
on the current CPU, and DTrace performs the activities specified by each ECB on the probe's ECB 
chain.  When all  ECBs have been executed,  interrupts  are  enabled and control  returns to  the 
provider. To simplify matters, all multiplexing of consumers on a single probe is handled by the 
framework’s ECB abstraction. Each ECB may have an optional predicate associated with it. If an 
ECB has such a predicate and it is not satisfied, then processing advances to the next ECB. The 

­­ 5 ­­



ECB is processed if the predicate is satisfied and it iterates over all of the actions defined in the 
ECB. Actions can indicate data recording, which is stored in the per-CPU buffer associated with the 
consumer that created the ECB. Actions may also update D variables. They are not allowed to store 
to kernel memory, modify registers, or make any arbitrary change to the system because that could 
risk  destabilizing  the  system.  Each  DTrace  consumer  has  a  set  of  in-kernel  per-CPU buffers 
allocated on its behalf and referred to by its consumer state. The consumer state is in turn referred 
to by each of the consumer’s ECBs. When an ECB action indicates data to be recorded, it  is 
recorded in the ECB consumer’s per-CPU buffer. The amount of data provided by a given ECB is 
always constant, but different ECBs may record different amounts of data. Buffer free-space is 
verified before each recording so there are no buffer overflows.

Actions and predicates are specified in a virtual machine instruction set that is emulated in the 
kernel at probe firing time. The instruction set, “D Intermediate Format” or DIF is a small RISC 
instruction  set  designed  for  simple  emulation  and  on-the-fly  code  generation.  It  is  a  design 
constraint that DIF emulation be absolutely safe since it is executed in the context of a probe fire. 
To assure basic sanity everything is verified and only forward branches are permitted. All loops are 
eliminated in order to disallow infinite loops. Many other safety features have been included to 
comply with the  absolutely safe policy of DTrace. Some of them include prevention of certain 
memory loads. Run-time errors are handled. Hardware faults are handled. Even the kernel’s page 
fault handler has been modified to recognize when a page fault has been generated from the DIF 
virtual machine.

2.2.2.2 Instrumentation Techniques
By formally separating instrumentation providers from the core framework, DTrace is able to 

accommodate  heterogeneous  instrumentation  methodologies.  Twelve  different  instrumentation 
providers have been implemented  and none of  them have  any observable probe effect  when 
disabled Having zero probe effect when disabled is a key feature of DTrace and makes DTrace 
dynamical in nature. Probes can be activated and deactivated when necessary. We will mention 
some of the providers included in DTrace:

– Function Boundary tracing – makes available a probe upon function entry and function exit. 
It  is highly dependent on the architecture, requiring many modifications, including the C 
compiler. It has been implemented on SPARC and x86 systems using different techniques for 
each platform.

– Statically defined tracing – kernel code is modified and provide probe insertion points. You 
must  be  familiar  with  the  kernel  implementation  to  use  it  effectively.  It  is  typically 
implemented by an expanding C-macro.

– Lock-tracing – this makes available probes that can be used to understand virtually any 
aspect of kernel synchronization behavior. It works by dynamically rewriting kernel functions 
that manipulate synchronization primitives, and is useful for understanding kernel resource 
contention.

– System call tracing – this provider makes available a probe at the entry and exit form each 
system call. It offers tremendous insight into application behavior with respect to the system. 
It works by dynamically rewriting the corresponding entry into the system call table when a 
probe is enabled.

– Profile – this provider is an unanchored probe that, instead of being associated with a point in 
execution, it is associated with an asynchronous event. The event source for this provider is a 
time-based interrupt of specified interval.

­­ 6 ­­



2.2.2.3 Interacting with the DTrace Framework
Using the D Language, DTrace permits users to specify arbitrary predicates and actions. D 

supports all ANSI C operations and allows access to the kernel’s native types and global variables. 
D includes support for several kinds of user-defined variables, including global, clause-local, and 
thread-local variables and associated arrays.  D programs are compiled into DIF by a compiler 
implemented  in  the  DTrace  library.  The  DIF  is  then  bundled  into  an  in-memory object  file 
representation and sent to the kernel DTrace framework for validation and probe enabling.

DTrace provides user-level program instrumentation through the  pid (process ID) provider, 
which can instrument arbitrary instructions in a specified process. The  pid provider is slightly 
different from other providers in that it actually defines a class of providers. Each process can 
potentially  have  an  associated  pid provider.  The  techniques  used  by  the  pid provider  are 
architecturally specific, but they all involve mechanisms to rewrite the instrumented instruction as 
to induce a trap into the operating system. The trap-based mechanism has a higher enabled probe 
effect than branch-based mechanisms used elsewhere, but it completely unifies kernel and user-
level instrumentation. Any DTrace mechanism that may be used with kernel-level probes may also 
be used with user-level probes.

By tracing events in both the kernel and user processes, and combining data from both sources, 
DTrace provides the complete view of the system required to understand systemic problems that 
span the user/kernel boundary. Although DTrace is dynamic in the sense that it can insert probes 
at execution time and execute trace code, the probe emplacements are far from being dynamic 
themselves.  Most  applications  require  pre-runtime modifications  in  order  to  support  different 
probes.  This  makes  DTrace  an  efficient  infrastructure  but  it  is  not  completely  free  to  insert 
instrumentation in all places. There are other interesting projects worth mentioning, although of 
less interest to us than DTrace. 

2.2.2.4 Other application instrumentation projects similar to DTrace
Safety augmenting operating system execution with user-specified code has been explored in 

systems like VINO [Seltzer et al., 1996] and SPIN [Bershad et al., 1995]. More generally, the notion 
of augmenting execution with code has been explored in aspect-oriented programming systems like 
Aspectj  [Kiczales et al., 2001]. However, these systems are all designed to extend the system but 
they were not designed for helping a user understand it. Systems like ATOM [Srivastava et al.,
1994] and Purify [Hastings et al., 1992] instrument a binary and run it in place of the original. This 
allows a user to understand the system but their solution is completely static. Static solutions like 
these do not provide systemic insight, meaning they cannot integrate instrumentation from disjoint 
applications, and they are generally unable to instrument the operating system whatsoever. Also, 
instrumentation  overhead  remains  constant  during  the  full  execution  of  the  instrumented 
application. DProbes [Moore, 2001] is based on dynamic instrumentation and thus has zero probe 
effect when not enabled, but DProbes relies on a technique that is  lossy when a probe is hit 
simultaneously on different CPUs, and misuse of DProbes can result in a system crash. Linux Trace 
Toolkit (LTT)  [Yaghmour et al., 2000] is designed around a static methodology and introduces a 
small, but non-zero, probe effect at each instrumentation point. Arbitrary actions are not possible 
and the number of probes is limited to minimize generated overhead. K42 [Wisniewski et al., 2003] 
is a research kernel that has its own static instrumentation framework. K42 has lock-free, per-CPU 
buffering but K42 implements it in a way that sacrifices the integrity of traced data. Many of its 
limitations are the same as in LTT. Kerninst [Tamches et al., 1999] is a dynamic instrumentation 
framework of use on operating system kernels. It achieves zero probe effect when disabled, and 
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allows  instrumentation  of  virtually  any  text  in  the  kernel.  However,  users  can  accidentally 
instrument routines that are not actually safe to instrument and cause fatal errors. 

2.2.3 Dynamic Translation
Dynamic  translation,  also  known  as  Just-In-Time  compilation  (JIT),  is  a  technique  for 

improving the runtime performance of a computer program. It converts, at runtime, code from one 
format into  another  (e.g.,  bytecode into  native machine code).  The performance improvement 
originates from caching the results of translating blocks of code, and not simply evaluating each 
line or operand separately, or compiling the code at development time. JIT builds upon two earlier 
ideas in run-time environments: bytecode compilation and dynamic compilation. Several modern 
runtime environments, such as Microsoft's .NET Framework and most implementations of Java, 
rely on JIT compilation for high-speed code execution.

JIT compilers modify code that is to be executed at runtime. There are many purposes for doing 
this  (e.g.,  code  optimization,  code  portability)  but  we  are  interested  in  the  ability  to  insert 
instrumentation  directly  into  bytecode in  order  to  better  understand  an  application.  One JIT 
compiler  [Olszewski et al., 2007] instruments operating system code by overwriting the system 
function  table  entry  corresponding  to  the  function  it  wishes  to  instrument.  The  overwritten 
addresses then point to the JIT, which copies the code of the function to a new location and inserts 
instrumentation in a quick and dynamic manner directly into the code. All calls to the original 
function then pass through the instrumented version of the function, which is controlled by the JIT. 
When instrumentation is to be removed, the original system function table is rewritten with the 
original address of the non-instrumented function, and the instrumented version of the function is 
discarded.

Conceptually debuggers and JIT compilers are similar. Debuggers  [GDB][Eclipse]  are also a 
means  for  application  instrumentation.  When  an  application  is  compiled  and  the  debugger 
instructions are enabled, trap and other instructions are inserted into the application into specific 
points. These instructions are then used to return execution control to the debugger. The debugger 
can choose the granularity of instrumentation by recompiling the application. The basic fault is 
that these instructions produce large overhead and are  not dynamic. This is why an application 
should not be normally executed with debugger instructions enabled. The difference with JIT 
compilers is that instrumentation is performed at runtime and instructions are not only for halting 
execution of the application under study, but can be arbitrary instructions for many different 
purposes.

2.2.4 Workload Analysis
Knowledge of how a system processes a workload is very important in modern day systems in 

order to locate performance bottlenecks and problems. Complex systems are composed of many 
different software components that interact in ever more complex manners. These systems must be 
analyzed and tools provided in order to improve how the system is understood.

A  common  scenario  is  a  distributed  system  that  is  composed  of  multi-vendor  software 
components. A solutions vendor can provide a system built from different modules, but he does not 
necessarily have the expertise to correct all performance issues. These multi-developer solutions 
can have many performance problems that are hard and expensive to locate. Individual vendors 
may provide support and training for solving performance issues within their components, but not 
necessarily for solving cross-component issues. Many problems cannot be solved by only focusing 
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on single components,  and require a system wide view. The tools provided should limit their 
requirement of direct support from the components they study, because many components are not 
provided  with  source  code.  This  limits  the  solution  to  the  borders  of  components  and  the 
interaction that each component has with the system. Also, tools should be automated as much as 
possible,  requiring  minimal human aid.  The purpose  of  the  tools  is,  in  general,  not  to  solve 
problems, but to isolate them efficiently and accurately, increasing programmers efficiency.

There have been many approaches providing insight on how to tackle this problem, but most 
are not dynamic or require severe modifications of the application under study. One approach 
[Hrishchuk et al., 1995] is to obtain causal traces of distributed systems and resource demands, by 
labeling each end-to-end activity using an object oriented prototyping language. This approach is 
interesting but not useful outside the prototyping system. An old version of Magpie [Barham et al.,
2003] associates traced messages of incoming requests with a unique identifier,  and associates 
resource usage throughout the system with that  identifier.  This  requires  a  very sophisticated 
tracing  infrastructure,  but  simple  post-processing  analysis.  The  Distributed  Programs Monitor 
project [Miller, 1984] reports causality using kernel implementation to track the causal information 
between pairs of messages, rather than inferring causality from timestamps. A different approach is 
one that Netlogger [Gunter, 2005] takes, which is to require programmers to add event logging to 
carefully chosen points in an application, and then generate "lifelines" that respond to causal paths. 
Netlogger provides tools to visualize logs, but the tools are somewhat lacking.

We find two different groups of work interesting and close to ours. These groups are workload 
analysis based on statistics obtained from the application under study, and deterministic workload 
analysis, which follows requests through a system as they are being serviced. In the following 
sections we will give an introduction to both, statistical and deterministic, workload modeling, and 
describe the work done by two major projects in these areas. These projects are Project5 [Aguilera
et al.,2003] which is funded by HP, and the newest version of Magpie [Barham et al., 2003], funded 
by Microsoft. 

2.2.5 Statistical workload analysis (Project 5)
Project 5 [Aguilera et al.,2003] infer causal paths from message traces to locate nodes of a black-

box  distributed  system  causing  performance  bottlenecks.  They  provide  tools  for  aiding  in 
debugging performance bottlenecks in distributed systems of black boxes. Their system is based on 
Pinpoint  [Chen et al., 2002], and estimates causality between nodes using statistical algorithms. 
They use two different algorithms, one for RPC style communication and another for message 
based communication, to locate the most likely parent node of an inter-node call. This is similar to 
constructing a call-graph, with the subtle difference that one node can be servicing various requests 
originating  from  the  same  node  simultaneously.  Since  nodes  are  black  boxes  and  no  extra 
instrumentation is added it becomes difficult to know exactly which call is related to which return. 

For example, in a system with only two nodes, A and B, suppose A calls B three times in a row 
before B has had time to finish any of the calls. That means that B is currently servicing 3 calls 
from A. B then returns 3 results to A. It is not clear which result from B belongs to which call from 
A because nodes are black boxes and the calls are performed across a network. If the system is 
implemented using RPC style communication, we would know that A has performed three calls 
towards node B. Then B has returned three answers to A. To complicate even more the matter, in a 
message based system we would only see three messages going to B and three messages going to 
A. In this context, it would not be clear if a message is an originating call or a return. This is 
because messages are sent to a node but there is no specific information that tells if the message is 
a call and expects a result, if it is a result, or if it is just information to be shared between nodes. 
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2.2.5.1 Approach
The approach taken by Project5 to infer dominant causal paths in distributed systems relies on 

tracing messages between nodes, and using offline algorithms to infer causality from these traces. 
The algorithms developed infer multi-hop causal path patterns, and provide statistics about latency. 
The message traces created are relatively simple, and the results are inferred statistically from the 
offline algorithms. As previously mentioned, two kinds of communication in distributed systems 
are taken into consideration. A causality analysis algorithm has been developed for each type of 
communication.  The  first  one,  the  nesting  algorithm for  RPC-style  (remote  procedure  call) 
communication,  operates  on  individual  messages  in  the  trace.  The  other,  the  convolution 
algorithm for message-based communication, uses signal-processing techniques to extract causal 
information from traces. The task is difficult because a real trace contains interleaved messages 
from separate causal paths. The approach involves three phases: 

I. Exposing and tracing communication. This phase happens online and is where a complete trace 
of all inter-node messages are gathered. These traces can be gathered under a real or synthetic 
load.  Each  trace contains,  at  a  minimum, a  tuple  or  series  of  tuples  (time stamp,  sender, 
receiver).

II. Inferring causal paths and patterns. This phase happens offline and is where one of the two 
post-processing algorithms are used. The algorithms must handle noise and incomplete traces, 
given  the  nature  of  a  distributed  system.  An  important  factor  to  consider  is  that  these 
algorithms need not be fool-proof, as they are only intended to help humans understand and 
debug systems, not to automate control.

III. Visualization. An important factor is being able to understand and visualize the information 
that has been analyzed. This phase has only been partially addressed so far and requires more 
attention.

The  details  of  the  two  algorithms  proposed  are  complicated  and  not  necessary  for  the 
understanding of the rest of our project. Instead, we will provide a short comparison of the two 
algorithms.

2.2.5.2 Nesting algorithm VS. Convolution algorithm
Comparing the two algorithms comes down to  comparing RPC vs  free-form messages. The 

convolution algorithm can find causal relationships in any form of message-based system, while 
the nesting  algorithm is  only useful  in  RPC systems.  Even further,  the nesting algorithm, as 
implemented, is not useful in RPC systems with call forwarding or asymmetric returns, forcing the 
use of the convolution algorithm in these cases. The nesting algorithm provides a more concise 
representation of the system than the convolution algorithm. Also, rare events may be found using 
the nesting algorithm, which is not possible with convolution since causality is caught by looking 
at spikes in the correlation of two signals, and rare events do not create spikes. The traces gathered 
for the convolution algorithm are simpler, only requiring timestamps, sender id and receiver id. For 
the nesting algorithm it is also necessary to mark entries with RPC call or return. In some cases this 
extra information may be inferred. The algorithm also performs much better if the trace system can 
extract call identifiers from the RPC messages. Practical running times of the nesting algorithm are 
quite low (much lower than the duration of the traces themselves) and the space overhead is likely 
the limiting factor. The convolution algorithm has space complexity linear in the length of the 
trace. Running time is the dominant cost for the algorithm and can be much slower than the 
nesting algorithm. In practice, there is a trade off between precision of the delay results and longer 
running time.
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2.2.5.3 Obtaining traces
In order for the algorithms to work, it is necessary to obtain traces from the system. There are 

numerous challenges when attempting to trace all messages between nodes in a distributed system. 
Black-box assumptions simplify the tracing problem, because relatively little information is needed 
about each message.  The black-box solution proposed by project  5  implies that  absolutely no 
support be required from the nodes of the system, no specific message knowledge be known, and it 
does not perturb system performance at all. This is because they do not suppose software vendors 
agreeing on any particular solution, so the applications-under-study must not be modified.

Passive network tracing can approximate this ideal, but cannot always expose nodes at the 
appropriate level of granularity. Two techniques have been used for achieving passive tracing, 
namely Port Mirroring, and Packet Sniffing at each participant host. In the cases where passive 
network tracing does not obtain the amount or the detail of information required a more intrusive 
tracing mechanism must be implemented. It is true that this compromises some of the black-box 
ideals, but if the costs remain low enough the tools may still be useful. It is even possible to have 
passive networking traces and more intrusive traces merged, building a unified view of a complex 
system built from new and legacy components. This allows programmers to create traces in specific 
areas of interest inside their components and still understand the overall interactions of the system.

Overall, project5 adheres to a black-box ideal very well. They provide causality analysis in 
distributed systems in a novel and dynamic way. Their dynamicity comes from being able to start 
tracing and remove tracing at any moment of execution and, in the case of passive tracing, this has 
zero overhead.

2.2.6 Deterministic workload analysis (Magpie)
Magpie  [Barham et al., 2003] attempt to correlate events in a system and relate them to the 

treatment of a request, providing an interesting method of analyzing overall system interaction and 
also the capability of  focusing on individual requests  in order to  distinguish individual  work 
elements, like those that cause bizarre or aberrant behavior. A request is defined as system activity 
which takes place in response to an action initiated by the application being traced (e.g., HTTP 
request, database query, file open request). A request is described as the sequence of applications 
involved in its processing and the resource consumed at each stage (e.g., CPU, bandwidth, disk 
transfer, latency). Request tracking is inherently difficult because of various reasons. There are 
many software components involved that are spread across different machines. No globally unique 
request ID is  present.  Multiple thread pools are used to service requests.  Threads interchange 
request information asynchronously and many synchronization primitives occur in user-mode and 
are not visible by the OS or OS libraries. Magpie focuses on distributed systems or more precisely, 
multi-tier  systems,  where elements of  the request  will  be serviced  on separate  machines  and 
separate applications. Their work has been implemented on a typical web-service, where part of the 
request is serviced on one machine and another part is serviced on a distant machine. A basic 
example of this is a web-server running on a frontend machine and a database server running on a 
backend machine.
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Magpie logs events belonging to a particular request and performs temporal joins over the log of 
events in order to identify the requests and to analyze the resources consumed by that request. 
Magpie relies heavily on an event infrastructure already integrated into the Windows operating 
system. They utilize an application specific schema to correlate events obtained from the Windows 
Event Tracing infrastructure. This application schema relates events in the system produced from 
instrumentation, interception and EWT (Event Tracing for Windows), but no global request ID is 
required. The application schema is not automatically constructed and a certain degree of expertise 
is required in order for it to be constructed. Part of the problem relies on the fact that a single 
request is serviced simultaneously by different software components. This occurs because requests 
are divided into smaller elements and execution is parallelized. It is necessary to understand how 
the software components interact and what each event produced from the system really means. For 
example,  which function calls cause a thread from a thread pool to be activated or send a message 
to a message queue for later servicing. The application specific schema then correlates activities in 
the system using thread ID, function name, function parameters, time of the event, and other 
elements in order to relate the activity to a particular request. Errors in the schema cause incorrect 
attribution of  requests and resources.  Also,  this  becomes exceedingly difficult  because Magpie 
works on legacy applications of which one does not usually have access to the source code, such as 
IIS  (Microsoft's  Internet  Information  Server).  This  difficulty  in  itself,  which  is  to  completely 
understand an application of which you do not have access to the source code,  makes Magpie's 
solution unfeasible except for people with advanced expertise in the system and only in limited 
cases.

Part of the Magpie project is relating events in the system to identify a request. This is done by 
observing the control flow (causality) in the application and by analyzing resource consumption. 
This provides a fine-grain way of debugging performance issues. The other part of Magpie's work 
is based on workload analysis and profiling of the application in order to analyze applications in a 
more coarse-grain manner. This is done by clustering similar requests based on their behavior and 
by building a probabilistic workload of the aggregated requests. This information is later used for 
performance debugging (e.g.,  fault detection, configuration, management), and for performance 
prediction (e.g., realistic workload models, capacity planning).
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Figure 1: Abstract view of Magpie
Shows a high level and simplified view of Magpie. The system is composed of two applications, a Frontend  
and a Backend. Requests are received at the frontend and the request is  serviced by different threads  
simultaneously.  All  communication channels  are intercepted.  Models are specified by an expert  of  the  
system and used to interpret and relate the events from ETW (Event Tracing for Windows) to the request in 
question.
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2.3 Application Management

2.3.1 Overview
Application management attempts to extract the administration of  an application from the 

functional concerns. It  is beneficial in creating generic software components that are reusable, 
because  the  components  can  focus  on  functionality  (e.g.  their  specific  job),  and not  on  non-
functional concerns (how they interact e.g., security issues, priority, QoS). There are a couple of 
techniques used for achieving application management. Among them, there is  interposition and 
meta-modeling.  Interposition focuses on interrupting execution of the application at  a specific 
point, and executing predefined functionality. Interposition can be seen as a rudimentary and non-
generic way of constructing meta-applications. Meta-modeling is  complicated to define in few 
words because there is not a true consensus to what it is. For our purposes, let us say that meta-
models are implemented by means of  meta-applications.  Meta-applications are the entities that 
will control the applications themselves and perform decisions related to application execution. 
Meta-applications require information related to the data that is being serviced in order to achieve 
their tasks. This information is called metadata.

In section 2.3.2 we explain meta-applications and metadata propagation in general, and we give 
a thorough analysis of Causeway, a meta-application infrastructure. In section  2.3.4 we explain 
annotation toolkits. They are a fine-grained, inter-code way of providing basic interposition and 
control execution flows of an application, but they are not generic.

2.3.2 Meta­applications and Metadata propagation
Metadata is  information that is  associated with data that  is  currently being serviced.  One 

definition of metadata is  “Metadata is structured, encoded data that describe characteristics of 
information-bearing entities to aid in the identification, discovery, assessment, and management  
of the described entities”. Loosely,  what this means is that data that exists in the application and is 
being serviced can have other data that explains it, commonly understood as higher-level data. The 
difference between metadata and the data that is in service is that metadata is non-functional data 
in the application, that is, it is information that is not required by the component in order to 
complete  its  particular  task.  Metadata  is  normally  grouped  into  a  context  and  is  useful  for 
evaluating non-functional  concerns in an application.  These concerns can include, but are not 
limited to, security concerns, QoS, application performance, and many others. Keeping this sort of 
information outside of the application keeps the application itself clean with no extraneous API 
usage, and also allows the addition of information to read-only components, such as 3rd party 
components.

Context propagation allows programmers to associate information with functional data. The 
metadata  is  hidden  from the  functional  elements  of  the  application  and  is  used  when non-
functional decisions are to be made. These decisions are performed by meta-applications. These 
meta-applications should only interact with the non-functional data of the application, since they 
are to be used for non-functional concerns of the application. Traditionally, there have been two 
approaches to writing meta-applications: a log-based approach, and a metadata based approach. 
Log-based approaches generally operate in two phases – first, execution events are recorded in 
logs, and next, the log records are analyzed. The analysis of logs can be performed while the 
application is executing or they can be performed postmortem. A limit to a log based approach is 
that the execution of requests cannot be altered because processing of the events lags the execution. 
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Metadata propagation is done inline with thread execution so meta-applications can access this 
information and control or alter the applications execution. These execution modifications are done 
to satisfy the non-functional concerns of the application previously mentioned. The authors of 
Causeway adopt the metadata passing approach, hence their objective is to provide a framework 
that makes meta-application development easier.

There are two projects of interest that have worked on automatic context propagation and 
meta-application construction. These projects, namely SDI [Reumann et al., 2004] and Causeway 
[Chanda et. al, 2005], are very similar to one and other. Causeway is a project that implements 
almost all the same concepts as SDI and adds a couple of improvements. In order to avoid repeating 
two very similar projects we will only explain Causeway.

2.3.3 Causeway
Causeway  is  an  attempt  to  build  a  general  meta-application  infrastructure  for  multi-tier 

applications.  These  applications  are  more  common  than  ever  and  are  composed  of  multiple 
programs communicating among themselves that can be spread across multiple machines. Requests 
are then serviced by multiple execution threads running in different software components. The 
approach  is  to  propagate  metadata  with  request  data  so  that  meta-applications  can  use  the 
metadata to achieve various goals. These goals should be restricted to non-functional concerns 
only.

Causeway  provides  an  interface  to  associate  metadata  with  threads  and  facilitates  the 
propagation of such metadata across communication channels. Causeway manages, handles and 
propagates  metadata  transparently  so  meta-applications  can  be  easily  built  on  top  of  it. 
Applications that do not require metadata remain oblivious to the contexts being passed, even 
though the context exists  and there  is  a  constant overhead generated from its  treatment.  An 
alternative to Causeway is to augment all application-level interprocess communication protocols 
as to transport metadata. This implies modifying every function call as to make metadata directly 
visible and propagated by the applications. Causeway chooses to make metadata propagation an 
operating system-level function, to make it independent of the application-level communication 
protocol used. This gives Causeway a large advantage, since not all applications in a multi-tier 
system have to be metadata-aware.

Causeway proposes automatic propagation of metadata across  system-visible  communication 
channels.  By system-visible,  we refer to those implemented directly in the system kernel  and 
system  libraries  (e.g.  sockets,  pipes).  For  non-system-visible  channels  (e.g.  shared  memory) 
Causeway provides an API to be called from application code in order to transfer metadata.
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Figure 2: Causeway metadata concept.
Shows Causeway's basic concept of metadata propagation. Metadata is directly associated with functional  
data, and at every interprocess communication (IPC) point metadata associated to the writer is copied to  
the channel.  Readers of  the channel  receive the functional  data and are associated to the metadata.  
Metadata propagation is handled automatically by the Causeway framework.

Causeway  uses  an  interface  for  injecting,  inspecting,  modifying  and  removing  metadata. 
Metadata is originally assigned to a thread. When a thread sends request data to another thread 
along a channel, Causeway transfers metadata from the former thread to the latter. Support for 
metadata propagation is required at transfer-points where an application thread sends or receives 
data from a channel.

Causeway consists of two parts in total:

1 Interfaces used by applications to manage and utilize metadata

2 Mechanisms for propagating metadata

2.3.3.1 Managing Metadata
Metadata in Causeway is a tuple containing the metadata-type and metadata-value. Metadata 

types include request priority, request identifier, and security identifier. Other metadata types can 
be directly specified by the meta-applications. Metadata is managed in a dictionary keyed by the 
address of the associated entity. An entity can either be a thread of control or data that is read from 
or written to a channel. A thread's metadata is propagated with the data written to a channel on a 
write operation. When the data is read, the associated metadata is then propagated to the thread 
performing the read.

Metadata can be assigned to a thread in two manners:

1 Metadata injection, using the Causeway API

2 Metadata propagation, when reading data from a channel

It is important to know that newly assigned metadata replaces the thread's metadata of the 
same type. This implies that metadata can come from one destination, as to say that a thread is 
treating one, and only one, request at any given moment.
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2.3.3.2 Meta­application interaction points
Meta-applications have two distinct ways to interact with Causeway. The first is through an 

interface to inject and modify metadata, and the second is through a callback interface, in which 
Causeway passes execution to handlers that have been properly registered by the meta-application. 
The metadata interface can be called from user or kernel level threads. It consists of four functions 
that  enable  metadata  to  be inspected  and/or  modified.  The  functions  are:  cw_type_query, 
cw_data_lookup, cw_data_insert, and cw_data_remove. The function names are self 
explanatory so we will not go into more details. These callbacks are points in the kernel or kernel 
libraries where metadata is passed between execution threads. A meta-application can register a 
callback method to a certain transfer-point. Transfer points are points where data is read or written 
to a channel by a thread. When metadata passes through a transfer point the registered callback 
methods are invoked with the metadata as an argument. The order in which the callback methods 
are executed is important because a callback method may modify metadata or alter execution. A 
registered callback at a transfer point is executed and has access to the metadata and to execution 
decisions. For example, if a security ID is lower than necessary, execution of the request can be 
immediately terminated.

2.3.3.3 Propagating metadata
Metadata is originally associated with a thread. When a thread performs a transfer of data 

across a communication channel, its metadata is associated with the data that is sent. The thread 
that  receives  the  data  is  then associated  with  the  corresponding  metadata  from the  data  he 
received.  In  essence,  this  should  happen for  all  inter-thread and interprocess  communication. 
Metadata transfer is done using a System Programming Interface (SPI) that consists of a single 
function. The function provided is  cw_metadata_xfer. It obtains the source entity's metadata 
and  transfers  it  to  the  destination  entity.  At  any  transfer  point  a  single  call  to 
cw_metadata_xfer suffices for metadata propagation.

The transfer points that have been instrumented in the implementation of Causeway are the 
following:

1 User-level to kernel-level thread

2 Kernel-level to user-level thread

3 Kernel-level thread to message

4 Message to kernel-level thread

Causeway handles sockets and pipes similarly. When a thread writes to a socket or a pipe, the 
thread's metadata is associated to the data written via the metadata transfer SPI. This is true only 
for local sockets. When using Internet sockets, the data is encapsulated in IP packets for send and 
receive across sockets. Causeway encapsulates metadata, in addition to data, in the IP packets.

System-opaque channels occur inside of the application. They are shared-memory channels that 
are  not  visible  to  the augmented kernel  nor  to  the augmented kernel  libraries.  For  metadata 
propagation to be consistent for the whole multi-tier application, these channels must also be 
instrumented. It is very difficult to automatically instrument shared memory channels because they 
are not easy to locate, and even if a shared memory location is found, there are instances when it is 
incoherent to propagate metadata because the shared memory does not imply data transfer (e.g. 
application specific memory allocator). For the above conditions this is not done automatically in 
Causeway, but Causeway alludes to locating synchronization mechanisms and analyzing them as a 
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possible solution to  automating instrumentation of shared memory channels.  In any case,  the 
application  must  be  instrumented  using  the  cw_metadata_xfer  function  previously 
mentioned.

2.3.4 Annotation Toolkits
Annotation toolkits are aids for programmers in order to express functionality different then 

that of the code itself. This can be to add commentaries for creating automatic documentation, to 
add compiler directives for optimizations, to add virtual machine directives that can be interpreted 
at runtime, or any number of different activities.

We are interested in annotations that are used for a specific purpose, meta-functionality. In 
particular, the annotations that interest us are those that automate non-functional concerns of the 
application. We show two different projects that use annotations to express DoS resistance. The 
first project inserts the annotations directly into code, and the second one, which is limited to 
component-based  systems,  adds  annotations  to  external  files  which  construct  the  component 
application. Although we are not directly interested in security or DoS attacks, these annotations 
give us a manner to make visible application activity that would normally remain obscure. They 
also show insight on the feasibility and possible design of an annotation toolkit for our purposes.

2.3.4.1 Denial of Service (DoS)
Denial of Service (DoS) attacks are a major source of concern in the Internet. DoS attacks are 
designed to consume a disproportionate amount of resources on the target system by exploiting 
weakness in the network software. Such attacks can cause the systems performance to slow down 
and even make the system unavailable for well behaving users. Protecting code from DoS attacks is 
often considered the responsibility of the OS, firewalls and intrusion detection systems. As a result, 
many DoS vulnerabilities are not discovered until the system has been attacked and the damage is 
already done. Defensive programming  [Qie, 2002] proposes and describes a software toolkit to 
improve  robustness  of  code  against  DoS  attacks.  It  is  important  to  find  automated  ways  of 
protecting software. Many factors are involved in making software DoS resistant and, to make 
things worse, most DoS attacks are unknown at the time of development. Creating robust and DoS 
resistant software is a challenging task. We will explain the solutions that rely on writing ad-hoc 
functions to constantly monitor the applications execution flow. Two approaches are studied. One 
that annotates the source code with macros that control how a function is used, and may deflect 
the execution path in case of suspected abuse. The other annotates external application-design files 
for the same purposes.

2.3.4.2 Inter­code annotations
Inter-code annotations are used by an annotation toolkit [Qie, 2002], which attempts to provide 

an automated defense against DoS attacks. The proposition is called defensive programming, by 
which it is suggested that a programmer must take an active role and provide systematic proactive 
protection against DoS attacks by embedding general mechanisms into software. Ideally, defensive 
software can protect against previously unknown DoS attacks. The key idea is to insert annotations 
that monitor and control the execution of the program at runtime. These annotations serve both as 
sensors that detect anomalies and actuators that change the control flow of a program when they 
detect that defensive maneuvers are necessary. For this purpose, a toolkit has been developed 
consisting of a set of annotation primitives, a runtime library, and a set of compiler extensions. 
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Programmers  can  now  specify  where  resources  are  acquired/consumed/released,  where  the 
program branches into independent  functionalities,  and what principals  are  holding resources. 
Rather  than focus  on  implementation details,  programmers  are  asked to  identify  the services 
provided and the resources consumed by their program at a high level. The effectiveness of the 
toolkit  depends  on  whether  a  good defense  policy  can  be  specified,  which  is  ultimately  the 
responsibility of the programmer. However, significant improvement of software robustness can be 
achieved  with  relatively  low  programming  effort.  To  implement  the  defensive  strategy, 
experienced programmers annotate source code of the application with macros. Then, during the 
programs execution, macros control how a function is  used and, in case of abuse, deflect the 
execution path to some other function. Placing the annotations in the right point is a sensible task, 
on which all the rest of the system relies. This is also the only possibility of spotting out potential 
weaknesses  in  the  program.  In  case  of  misplacement  of  the  annotations,  the  system will  be 
susceptible to attacks. The toolkit itself proves the feasibility of annotations, but the particularities 
of the annotations themselves are not required to be understood because they are DoS specific.

The toolkit is implemented using a different C-macro for each annotation and is linked with an 
instance of a corresponding data structure that represents the annotation. There are situations 
where the  toolkit  has  difficulty  in  providing  protection  to  the desirable  level.  Some of  these 
situations are implementation issues that can be improved while others are fundamental limitations 
of  the approach.  The current toolkit  only applies to a single process because the sensors and 
actuators need to share state, and thus, they only work within a single memory space. It is not sure 
how inter-process communication may help or hinder. Finally, rate limiting, which is the tactic that 
the annotations employ, only controls the quantity of resources consumed by each service, but not 
the order that resources are consumed. Not being able to schedule resources may lead to more 
conservative specifications in resource limits, and should be improved upon.

2.3.4.3 External annotations
The previous solution relies on annotating the source code directly via macros. Placing these 

macros or annotations is a sensible task. A-posteriori Defensive Programming  [Schiavoni, 2006] 
proposes a different approach, but it is restricted to component-based systems. They show that in 
this context, a general mechanism to detect DoS attacks is possible. The key idea is to annotate 
services and use the annotations to detect an attack. In component based systems, a component 
exposes its services, so in essence, the components themselves must be annotated. These annotations 
can be applied after the design and implementation of a component and without modifying either of them. It 
is even possible to add DoS protection to an already deployed application. This gives way to the a posteriori 
naming of the approach.

Component-based systems are made of  an assembly of  components  that interact through  bindings.  
Bindings are established between components requesting a service and components providing a service. It is 
easy to look at bindings to find components that provide resources and components that consume resources, 
helping to identify components  that need to be defended and making component isolation much easier 
(isolation being an important defense strategy). The proposal is to use annotations at the design level. 
Annotations are metadata that mark component interfaces and allow expressing semantics about a 
given component.  An  Overlay of components is  a set  of  components that are marked by the same 
annotation. All the services belonging to the overlay are protected by the same defense strategy. A defensive 
strategy is defined by an annotation consumer whose role is to detect which semantics have to be applied to 
the component annotated with the annotation it is in charge of. When the annotation consumer is deployed 
with the rest of the application, it will monitor the activity of all the components in the same overlay. Once 
the overlay is defined, the annotation consumer implementing the policy to deploy is completely 
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independent of it. The application deployer only has to annotate each service. Being that required 
and provided services are explicitly declared this effort is greatly simplified.

The annotation toolkit has been implemented within Fractal. Fractal is a Java-based component 
model that provides an Architecture Description Language (ADL), which allows the description of 
component configurations.  The fractal ADL has been extended adding an  annotatedby attribute to the 
interface element. This attribute is  used to define which annotation is  to be used for a given interface. 
Furthermore, the implementation relies on Aspect Oriented Programming (AOP) techniques and on Java 1.5 
annotations.  Java 1.5  annotations  are first  class  elements,  themselves annotatable  by meta-annotations. 
Through meta-annotations, two parameters are specifiable: target, to specify the granularity of an annotation 
and, retention, indicating how long an annotation has to be retained. The ADL is parsed by a factory that 
produces components  whose  interfaces  are  annotated  using  annotations  specified  in  the ADL 
description. Annotation consumers, on the other hand, are developed using AOP techniques. I will give a 
very brief explanation on AOP (Aspect Oriented Programming). AOP implements crosscutting concerns that 
affect several classes and that are not well modularized. It allows the implementation of these concerns in 
well modular well-localized entities called  aspects.  Aspects are made of dedicated constructs that mirror 
well-defined points in program flow and structure. This is called the joinpoint model. A pointcut construct 
lets you pick out join points that match a certain criteria, and an advice construct lets you add code to be 
executed  at  those  points.  To  better  understand  the  concepts,  there  is  an  implicit  relation  between 
sensors/activators and pointcuts/advices. The aspect using an annotation to define an interesting point in the 
execution flow of a program is called annotation consumer.

The  final  element  to  be  solved  is  deployment  of  aspects  and  components.  The  Fractal 
component model provides a runtime environment that allows creating components from their 
ADL definition. Unfortunately, because part of the code of Fractal components is dynamically 
generated, it is not possible to intertwine aspects and components source code. The chosen solution 
was to modify Fractals runtime (not extend Fractal) to make use of load-time weaving mechanisms 
introduced in AspectJ5.0.  By focusing on component based systems it  is  possible to provide a 
general mechanism to detect DoS attacks. The provided solution gives two important advantages 
over other proposed solutions: (1) source code does not require modification and, (2) it can be 
applied at deployment time.

2.4 Summary of the State of the art
In this section we will provide a short summary of the projects explained in the state of the art, 

mainly focusing on the drawbacks of each project. This will show us what an ideal solution should 
be, and give us the basis for unifying the different projects, providing a series of improvements in 
the domains of application management and application analysis. At the end of the state of the art, 
we provide a view of what problems exist in current solutions, and give insight on what an ideal 
solution would entail.

2.4.1 Project summaries

2.4.1.1 DTrace
 DTrace [Cantrill et al., 2004] adheres to a certain number of principals that make it feasible to be 

used in production systems, and is one of the main differences between DTrace and preexisting 
solutions like LTT  [Yaghmour et al., 2000], DProbes  [Moore, 2001] or Kerninst  [Tamches et al.,
1999]. These ideals are that a performance analysis infrastructure must have zero probe effect when 
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enabled, and must be absolutely safe. That is, its mere presence should not make the system any 
slower, and there must be no way to accidentally induce system failure through misuse. DTrace 
uses a high-level and safe instrumentation language that has been dubbed D. DTrace is platform 
dependent and tightly integrated with the operating system kernel, making it difficult to migrate to 
other platforms. Systemtap [Prasad et al., 2005] has been created for the Linux platform and can be 
seen,  at  least  conceptually,  as  a  Linux  clone  of  DTrace  (for  the  Solaris  OS).  Though  the 
implementation is very different, it remains platform specific. Systemtap is proof that migrating 
such platform specific frameworks is a delicate matter. Furthermore, DTrace uses probes to insert 
code  into  running  applications  or  the  kernel.  These  insertion  points  or  hooks  are  generally 
predefined and many even require  modifying the C compiler  in  order to be inserted.  This is 
precisely the case of the binary instruction “no-op” (no operation), which is an empty operation 
inserted at the start and end of every function. This instruction is then overwritten by DTrace with 
a method call into the DTrace framework in order to execute instrumentation. Although the no-op 
instruction does not produce any noticeable overhead even on micro-benchmarks, it is a static 
solution, not dynamic as DTrace would like to imply.

DTrace provides a manner of understanding applications and OS as one in order to help in 
systemic problems. It does not provide insight on how applications divide workload or how a single 
request  is  spread across different  software components.  A fine-grain analysis  of  workloads is 
required. DTrace does not provide mechanisms to modify the execution of applications, nor any 
support for non-functional concerns.

2.4.1.2 Project5
Project5  [Aguilera et al.,2003] infers dominant causal paths in distributed systems relying on 

tracing messages between nodes and using offline algorithms to infer causality from these traces. 
Two  statistical  algorithms  for  inferring  causal  paths  have  been  proposed  and  have  many 
disadvantages. First, they are statistical so no individual calls can be distinguished. They provide a 
very general vision of how components interact and which components cause bottlenecks. The 
algorithms are performed offline because they are costly and because they need a large amount of 
traces in order to correctly infer causality. The complete set of traces to be analyzed has to be 
obtained in one pass, because results from analyzing one set of traces cannot be aggregated with 
other results. Large amounts of traces are needed, causing large calculation times, which makes 
them not useful for online analysis. If during the time traces are being obtained the workload on 
the distributed system is altered or differs, the results will show a generalized analysis of the 
workload, making it difficult to understand the system or it may cause programmers to come to 
erroneous conclusions. Statistical algorithms only show relevant results on execution paths that are 
frequent. That is, a call path is going to appear as interesting only if it has been executed repeatedly 
with very similar execution times. The more variance within component execution times, the less 
exact the results of the algorithm will be, making it more difficult to understand the application. 
Also, aberrant or seldom occurring behaviors of an application are completely discarded.

Statistical analysis calculations are costly and it is only a “best-guess” calculation. Individual 
calls are not identified. We call Project5 a “best-guess” approach because correlation does not imply 
causality. Loosely interpreted this means that coincidence is not proof, and this is a basic limitation 
of both of their algorithms. Limiting the solution to after-execution is  an important drawback 
because the information obtained cannot be used real-time in order to make immediate decisions 
on the execution of the application at hand, nor is it possible to provide meta-application support.
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2.4.1.3 Magpie
Magpie  [Isaacs  et  al.,  2005] is  a  toolchain  that  helps  understand  system  behavior  by 

automatically  extracting  individual  requests  from  a  live  system,  and  then  constructing  a 
probabilistic workload model from this data. The toolchain relies on instrumentation in the kernel, 
middleware and application-level components to generate events. Magpie is platform specific and 
relies  on  modifying  communication  channels  that  applications  use  in  order  to  obtain  useful 
information. These modifications are not dynamic and produce continual overhead. The solution is 
low level and relies on complicated event models tailored to the application to properly interpret 
the event produced. Even though offline and online versions of Magpie exist, they are only useful 
for analyzing the application, and cannot be used for meta-application or context propagation 
because of the time needed to parse events. Although non-functional concerns are not addressed by 
Magpie, the latter provides automatic workload analysis based on a request granularity, and this is 
the strong point of the project.

2.4.1.4 Causeway
Causeway is a general meta-application infrastructure for multi-tier applications. They provide 

an automated way of metadata propagation by instrumenting the kernel and kernel libraries. They 
provide an API for applications to insert when inter-thread communication occurs but does not 
pass through the augmented kernel nor through the augmented kernel libraries. Causeway has 
many disadvantages. There are a large amount of OS modifications  required that cause permanent 
overhead for all applications that use operating system channels, and also make it platform specific. 
It  is  not  fine-grained nor  is  meta-application  interaction  consistent.  The  granularity  of  meta-
applications is restricted to interception points inside the OS. These interception points can have 
callbacks assigned to them, and are the basis of meta-application interaction. Applications that 
interact frequently with the OS communication channels have many meta-application interception 
points, but applications that do not communicate using the OS have a very limited number, making 
the meta-applications of little use. Causeway does not use a request granularity, and metadata that 
is added or modified can only be used by software downstream. Causeway does not support the 
analysis  of  an  application,  it  only  provides  automated  metadata  propagation.  No  profiling 
techniques have been envisioned or are supported with the infrastructure. Causeway identifies 
communication  points  but  cannot  distinguish  individual  elements  of  the  application,  like  the 
function that performs the call.  Another limitation of Causeway is that a thread is considered 
causally dependent to only the last event or last entity that it has interacted with. That is, a thread 
only holds the metadata related to the last information read from one of the instrumented system 
channels, nothing more. This does not respect causal dependency, where one actor may be causally 
dependent to multiple other actors.

2.4.1.5 Defensive Programming Toolkits
Defensive Programming [Qie, 2002] suggests that a programmer must take an active role and 

provide systematic proactive protection against DoS attacks by embedding general mechanisms 
into software. The first approach is to insert the annotations directly into the code. Not only are 
annotations inserted, but the programmer specifies what actions are to be taken in case one of the 
conditions specified becomes true, causing a mix of non-functional and functional concerns that 
can only be changed by modifying and recompiling the application code.  The solution is  not 
dynamic, nor generic, nor does it support metadata propagation, meta-applications, or profiling of 
any kind. It is specific to DoS and resource consumption concerns.
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The second solution [Schiavoni, 2006] is proposed for component-based systems and separates 
functional and non-functional concerns by specifying the annotations in component design files, 
instead of directly inside the application code. It has many of the same drawbacks as the previous 
toolkit, but improves annotations by making them modular and dynamic. The limits imposed on 
their work lie on their dependence to AOP. There is constant overhead if they wish to be runtime-
dynamic. The annotations are used to specify services provided by the application and cannot be as 
fine-grained as individual instructions.

2.5 Remaining issues
There  has  been  a  large  distinction  between  different  areas  in  computer  science,  as  is 

performance analysis, workload profiling, context propagation, and application management. Their 
particular objectives are not the same, but all these areas rely on the same basis. All of them require 
obtaining information from the application in order to perform their specific tasks. Even though 
they share this common trait (i.e. a need for instrumentation), they all utilize different granularities 
for achieving their goals. Profiling analyzes which functions in an application are being highly 
used  or  where  bottlenecks  exist.  Workload  analysis  characterizes  how  applications  react  to 
different  types  of  information  it  services.  Meta-applications  attempt separating  non-functional 
concerns from the application, but they have been limited to interaction points between the OS and 
the application, making it  difficult to have a true understanding of the application itself.  This 
causes an application programmer or an administrator to be forced to analyze many different 
concepts and relate the results on his own between the different solutions he uses.

Application instrumentation is the foundation for these different areas. Ideally, instrumentation 
should be implemented as a dynamic infrastructure that provides variable interaction points that 
are  adjustable  when  necessary,  focusing  on  points  of  interest  in  the  application.  In  reality, 
interaction points in existing solutions are rigid and cannot be changed. Existing solutions have 
been limited to a fixed and generally large granularity. Internal operations of an application go 
completely unnoticed. In many cases, only external communication is intercepted, and only these 
points  permit  application  analysis  and  application  management.  Furthering  difficulty  for 
programmers, external communication points are not consistent, and can vary from one application 
to another. Some applications may provide many interaction points for meta-applications, while 
others do not. In short, meta-applications are not useful for applications they cannot interact with, 
and meta-applications must be tailored to the specific limits of applications that do provide useful 
interaction points.

In Table 1 we compare each project to the most important characteristics that would make for 
an ideal solution. The characteristics are separated into two groups:  analysis and  management. 
This division is sometimes not so clear do to the common dependency on analysis. It shows that 
solutions that provide good instrumentation techniques do not provide application management 
capabilities.  Solutions  that  provide meta  functionalities  do  not  understand  or  instrument  the 
application  very  well.  This  gap  must  be  bridged  in  order  to  provide  a  unified  view  of  an 
application.  This unification requires a  common granularity.  The granularity  must be equally 
useful for performing application instrumentation, workload analysis, profiling, meta-application 
construction, and developers.
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Application Instrumentation  and Application Analysis  Characteristics1 Application Management Characteristics

Main Objectives
Runtime 
Dynamic

Zero­overhead when 
not enabled

Platform 
independent

Fine­grained interaction or 
interception points

Provides execution 
interception2

Provides 
meta­application 
functionalities3

P
r
o
j
e
c
t
s

DTrace Locate systemic 
problems.

Depends on probe 
implementation. Yes. No. Yes, but depends on probe 

implementation.
No. Only obtains data from 
the system. No.

Project 5 Statistical causality for 
distributed systems.

Yes, when using 
passive tracing. Yes. Yes. Used for 

distributed systems.
No. Can only distinguish 
individual nodes, nothing else. No. It is passive. No.

Magpie Request tracking, 
workload profiling. No. No. No.

No. Interaction limited to OS 
interception and application 
events.

No. Only obtains and 
analyzes information. No.

Causeway Meta­application 
infrastructure. No. No.

No. But concept is 
implementable in 
other OS.

No. Interaction limited to OS 
interception. Yes. Yes.

Annotation 
Toolkit 
(inter­code)

Intercept/modify 
execution. No. No. Yes. Yes.

Yes, but policies are specified 
before execution, and cannot 
be modified at runtime.

No.

Annotation 
Toolkit 
(component­based)

Dynamic Annotations. Depends on AOP 
implementation.

Annotations yes.  But 
dynamic AOP causes 
constant overhead.

Yes. Limited to method or function 
granularity.

Yes, but policies are specified 
before execution. No.

Table 1: Comparison table of projects and desired characteristics for application instrumentation and application management.

1 Refers to application instrumentation, profiling and workload analysis.
2 Can modify execution of the application.
3 Provides high­level concepts permitting the construction of meta­applications.
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C h a p t e r  C h a p t e r   I I II I I

3 Details of the Contribution

3.1 Overview
We have analyzed the state of the art and we have seen the limitations that exist. Solutions are 

specific to the exact problem they satisfy, and cannot be used outside of their particular context. 
Most solutions are not feasible in production systems because they are either not dynamic or they 
produce too much overhead. Many of the solutions proposed rely on the same bases, like software 
tracing, but even so they provide disjoint views of the application they study. Concepts have not 
been generalized and are difficult to interpret from one tool to another. Tools are specific for a 
specific task and developers are forced to bridge these conceptual gaps on their own. It is necessary 
to unite the solutions providing a fine-grained, high-level and dynamic solution.

We propose a system that improves on existing work by removing the limitations seen in the 
state of the art. The system is based on Component-Based Software Engineering (CBSE). CBSE is 
a branch of the software engineering discipline, with emphasis on decomposition of the engineered 
systems into functional or logical components with well-defined interfaces used for communication 
across the components. Components are considered to be a higher level of abstraction than objects, 
and as such they do not share state, they communicate by exchanging messages that carry data. 
Components are black-box entities that express their interactions with other components through 
well defined interfaces. Interfaces can be of two types, client or server. Server interfaces provide 
the  functionality  of  the  component,  and  client  interfaces  are  used  to  express  a  functional 
requirements  of  the  component.  Client  interfaces  are  bound  to  compatible  server  interfaces. 
Bindings are the interaction points between two components and can be modified at runtime. 
Components provide means of unbinding and rebinding their client interfaces to other compatible 
server interfaces. This is useful for constructing runtime dynamic applications, that can adjust to 
the requirements of the system by remodeling the application itself. Components can be added, 
removed or modified while the application is in execution.

 Our system is useful for centralized component-based applications (i.e., single memory address 
applications). We have chosen an implementation based on the component model because of its 
modularity, its well defined interceptable interaction points and its runtime dynamicity. These 
three characteristics are key to permitting application instrumentation to be dynamic, fine-grained, 
and based on a consistent granularity.  The component model provides functionality that existing 
solutions did not have and were not able to exploit, making them static and coarse-grained.
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Our solution extends the concept of request, as used by web-servers, to component applications 
in  general.  The idea  behind using  requests  is  to  represent  application activity  by regrouping 
activity  to  a  single  action  that  is  initiated  externally,  instead  of  viewing application  activity 
through  single  entities  (e.g.,  single  software  component,  thread).  This  is  more  intuitive  for 
developers and provides an understanding of the application based on the services it provides. 
Requests  are  the base  granularity  for  our  solution.  Requests  are  messages  sent  from a  client 
interface to a server interface for treatment. A request can then be divided into smaller tasks,  and 
serviced by different software components simultaneously. These task divisions are performed in 
order to achieve parallelization and optimal use of resources in the system. They are in fact, causal 
information pathways that exist  in the application, and must be analyzed in order to regroup 
activity to its  originating request.  Furthermore, there is  potentially no limit to the amount of 
requests being serviced by the application, so each component of the application may be servicing 
multiple requests at the same time. A request history is recorded during its servicing, and is called a 
request execution path.  The request execution history includes important information  (e.g. the 
components used to service the request, the time spent by each component, the task divisions and 
ramifications produced servicing the request).

The first problem we face is the construction of requests as a unique and universal entity for 
application analysis. This is achieved by instrumenting the application. Component applications are 
instrumented using dynamic tracers that analyze all inter-component activities. Dynamic tracers 
are inserted between bindings and produce events every time a message crosses a component 
boundary. Dynamic tracers are insufficient for request tracking because components are black-box 
entities, so causal information pathways inside a component go unseen (e.g., where requests are 
divided into subtasks). It is necessary for these pathways to be seen by the tracing infrastructure. 
This is achieved by instrumenting the component itself, turning it into a gray-box component. Per-
component instrumentation is achieved using an annotation toolkit for identifying asynchronous 
execution.  Dynamic tracers  and the  asynchronous annotation  toolkit  produce the  information 
necessary, given simple analysis, for constructing requests. This provides us with online, fine-grain 
and deterministic request analysis.

Requests are now viewed as an entity in the application.  We provide functionality based on 
requests. A request consumer interface is provided for applications wishing to perform workload 
analysis,  although we do not provide application profiling ourselves. External applications can 
consume request execution paths and do application profiling themselves. Also, we provide meta-
application construction using the same request granularity. Meta-applications are used for non-
functional concerns in the application and are created separately from functional aspects of the 
application, improving the separation of concerns. Basically, a meta-application interprets the non-
functional concerns specified by the user, and modifies execution of the application accordingly 
(see  Figure 3 for a meta-application overview). Meta-applications require metadata in order to 
perform non-functional  concerns.  We  group  metadata  into  contexts  and  provide  two  unique 
context types, namely  request context and  message context.  Contexts are referenced instead of 
propagated,  avoiding  the  overhead  involved  in  constantly  copying  contexts.  Meta-application 
interaction points are called callbacks and performed by interrupting momentarily execution of the 
application. Callback interaction points are voluntarily limited to component interfaces, in order to 
maintain the separation of concerns and not disrupt internal functionality of the component4. This 
provides consistent, fine-grained (i.e. individual components are distinguished), and fully dynamic 
meta-application  construction  that  benefits  from requests  as  the  workload division  of  choice. 
Finally, the solution is platform independent and can be implemented in many different component 
models.

4 Components are well defined and modular entities. It is not recommended to interrupt their internal functionality.
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Figure 3: Meta-application overview. 
Illustrates the concept of meta-applications and how they can interact with applications. Interaction is  
provided by fine-grained instrumented points in the application.  The meta-application infrastructure 
must  analyze  the  non-functional  concerns  and  provide  the  meta-application  functionality  to  the  
application.

In section 3.2 we explain how to monitor synchronous interactions between components using 
dynamic tracers. Section 3.3 details how we study asynchronous events using an annotation toolkit 
designed  for  that  purpose.  Section  3.4 describes  how  the  information  obtained  from  the 
instrumentation is used to automatically follow requests in the application. Section  3.5 describes 
the usage of requests for making metadata visible to all entities servicing the request. Section 3.6 
explains  the  callback  infrastructure  and  how  it  is  used  for  constructing  fine-grained  meta-
applications. Section 3.7 explains the request consumer interface used for profiling and workload 
analysis. Section 3.8 compares our solution to the other solutions introduced in the state of the art. 
Finally, section 3.9 is a summary of the chapter.

3.2 Synchronous interaction
As previously mentioned, in component-based software engineering, dynamic modifications are 

possible  without  modifying  the  original  source  code  of  the  application.  We  rely  on  the 
reconfigurability of component-based applications in order to construct a tracing infrastructure that 
is dynamic. It can be inserted and removed at runtime and causes no overhead when not enabled. 
To construct the infrastructure we modify the structure of the application under study by adding 
new  components.  Primitive  components  remain  black-box  entities,  because  the  tracing 
infrastructure does not modify primitive components and it is unable to know what happens inside 
a primitive component. As a reminder, primitive components are those which directly implement 
the functionality of the system.
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In order to study how two components interact, we insert a tracer component in between the 
two components, permitting us to analyze each and every call that is made from the client to the 
server  component.  The  tracer  component  is  a  simple  and small  component  that  does a  basic 
analysis of the call that is being made. It intercepts calls from the client to the server interfaces, 
analyzes the call, and then delegates the call to the server. It obtains information like the interface 
the call is made on, the time of the call, thread ID, etc. More sophisticated tracers are also possible 
and they may analyze the arguments sent between calls and the results returned by the call, but for 
our purposes less complicated tracers are preferred. We use very simple tracers to minimize the 
effect of the tracing infrastructure on the application, which gives a truer understanding of the 
application since there is less interference. 

Figure 4: Dynamic tracers to instrument the application.
Left,  shows  a  component  application  and interactions  between components.  Right,  shows  the  same 
component application with dynamic tracers inserted into the bindings between the components. These 
tracers permit tracking thread execution paths in an application.

In Figure 4 you can see how a component application perceives tracers. The original application 
runs normally, then tracers are inserted into communication pathways of the application, and we 
obtain an extended and instrumented application. This tracing solution is a black-box solution 
respecting  primitive  components.  This  is  because  the  internal  functionality  of  a  primitive 
component  is  not,  in  anyway,  analyzed.  Each  tracer  analyzes  one  bound  interface  of  the 
application. Inserting tracers into every bound interface gives us information on all  the inter-
component interactions performed by the application. 

It is important to understand how dynamic tracers function and what information is obtained. 
When a thread passes from the client interface of an external component, through the binding, to 
the server interface of the component under study, we say a call is being performed. This thread 
then  executes  instructions  inside  the  server  component,  and  when  finished  with  the  server 
calculations, it closes the call on the server component and returns through the binding to the client 
component. Each time the thread passes through the binding it is viewed by the tracer. This has a 
close  resemblance to  RPC calls  in  distributed systems,  with the difference  that  the  thread is 
followed using its threadID. This is basic functionality of a component call in a single memory-
space. Calls performed in distributed domains are different and beyond the scope the this project.

Dynamic  tracers  provide  a  means  of  intercepting  and  halting  an  execution  thread  in  the 
application. This is important because tracing statistics and  actions regarding application execution 
can be performed while the component is executing. For example, if the calculations regarding the 
execution time of the call in progress exceed a certain threshold, it is possible to interrupt the 
execution and cancel the call. Calculations are thus performed in real-time and can be used for 
modifying application execution.
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The  precise  creation  of  the  tracer  components  is  platform  dependent,  and  varies  from 
implementation to implementation, so it will not be discussed at this time. There are a series of 
steps which must be performed by all implementations of the tracing infrastructure, which are the 
following:

1 The Trace Infrastructure must be instantiated and started.

2 The application to be instrumented must be introspected and the instrumentation 
points located. These instrumentation points are bindings between interfaces.

3 For each binding to be instrumented:

1 The components must be set to a passive state. Passive state is when no 
threads are executing inside the component. This limitation comes directly 
from the component model.

2 One  tracer  component  must  be  created.  The  tracer  component  must 
implement one client interface and one server interface of the same type as 
the  binding  being  instrumented.  Tracers  have  additional  interfaces  to 
interact with the tracing infrastructure (for more information on interaction 
between tracers and tracing infrastructure see Chapter IV Implementation).

3 The binding to be instrumented is  unbound. The client interface of the 
application is bound to the server interface of the tracer. The client interface 
of the tracer is bound to the server interface of the application.

In general, a tracing infrastructure of this kind is useful in applications that reside in a single 
memory space, but not for distributed systems.  Further enhancements may eventually include 
distributed systems.

3.3 Asynchronous interaction

3.3.1 Overview
There are limits to the solution. Dynamic tracers can follow each thread through an application, 

knowing where a  thread is,  what components  it  has passed  through, the time spent  in  each 
component, and many other useful elements. What dynamic tracers do not see are inter-thread 
communication points,  because these events occur inside primitive components, which are not 
internally instrumented by dynamic tracers. It is necessary to understand and view asynchronous 
execution in order to properly trace applications.
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Figure 5: Hidden component functionality.
Shows  an  abstraction  of  thread  execution  in  components.  Components  can  be  introspected,  but  the  
implementation code cannot be analyzed. Internal events that a component perform are not visible externally.  
The arrows show a thread enter and exit the component.

Figure 5 shows  that there are limits on the information dynamic tracers can obtain. They study 
events that cross component boundaries, but are not capable of viewing intra-component events. 
This is important because it shows a need for finer analysis of applications in order to identify 
causal pathways.

Asynchronous  execution  is  characterized  by  asynchronous  events.  A  thread  executes 
instructions one after the other in a sequential order. A thread receives data and then executes the 
instructions to service it. Data that is being serviced by a thread is in essence sequential, because it 
is associated with the thread that is performing the service. Events that break this sequentiality are 
known as  asynchronous  events.  Inter-thread or  inter-process  communication  are  examples  of 
asynchronous events.  Asynchronous events are important to understand because they transfer 
information between different threads. This means that an original task can be partitioned and 
serviced  by  different  threads.  A  common  example  is  the  partitioning  of  tasks  in  order  to 
simultaneously service parts of it, making better use of underlying resources, like multiple CPUs. 
This is known as task parallelization.

There are many asynchronous events that occur in applications. These asynchronous events are 
performed for different reasons and causality between events is not easy to automatically identify. 
There are different ways of automatically identifying causality between asynchronous events in 
applications. The first is to make many assumptions, restricting the ways in which asynchronous 
events are carried out.  These assumptions can be very limiting and in many cases they may 
incorrectly attribute causal paths, especially when the assumptions made are inaccurate. Whodunit 
[Chanda  et  al.,  2007] calculates  communication  through shared  memory  automatically.  They 
assume that all  asynchronous communication through shared memory occurs inside of critical 
sections, and that the information written to the channel is calculated before the critical section, 
and information read from the channel is used after the critical section. Another approach is to 
have asynchronous events commented or annotated. This requires external intervention so the 
annotations  can  be  correctly  placed.  Annotations  can  then  be  used  to  identify  causal 
communication pathways generated by asynchronous events.

We analyze asynchronous events that a component application may perform and provide a 
series of generic information probes that are used to correctly attribute causal pathways. We will 
call these information probes annotations, but they are not to be confused with Java annotations or 
annotations  in  aspect  oriented  programming  (AOP).  The  annotations  are  generic  and 
implementation independent.  They can be implemented in different  platforms,  under different 
conditions, with the necessary per-platform modifications and optimizations. Possible scenarios for 
implementing the annotations are different using technologies like Java-annotations, C-macros, an 
API, inter-code markers, trap instructions, etc. Their particular implementation will depend on the 
chosen platform, dynamic expectations of the application (e.g., compile-time, load-time, run-time), 
overhead  of  the  annotation,  and  other  conditions.  Eventually  these  annotations  could  be 
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automatically inserted into code. Asynchronous communication points might be identifiable using 
static code analysis or executing instructions through a virtual machine like Qemu [Bellard]. This 
would be an interesting extension to our project, but for the moment we will  suppose that a 
proficient programmer places them in precise locations in order to correctly exhibit asynchronous 
behavior.

The  annotations  should  provide  enough  information  for  an  external  application  to  fully 
understand  asynchronous  events  in  the  application  under  study.  These  events  detect  causal 
information paths. The causal paths are, in essence, request paths, since asynchronous events imply 
information passing. Figure 6 shows how annotations can be interpreted.

Figure 6: Annotation toolkit.
Shows an abstract view of the information that is obtained utilizing annotations. Left, an application without  
instrumentation.  Right,  the application instrumented with annotations,  showing where and what kind of  
asynchronous events exist in the application. 

3.3.2 Defining annotations
There are a series of annotations that may seem redundant in some cases because of the close 

resemblance between the asynchronous events. For example, message queues in shared memory 
may seem very similar to operating system pipes, or, socket communication may seem similar to 
port communication. The initial reaction is to provide a simple, reduced set of annotations as to 
simplify the programmers job of using them. This, in many cases is an optimal solution, but it 
limits an application from distinguishing between different asynchronous events. In applications it 
might be too costly to probe every type of asynchronous event at once, but it may be feasible to 
analyze them separately. Creating different annotations distinguishes events and permits us to 
“close” our view of events we are not interested in. Also, a specialized annotation may be more 
properly tailored to the needs of a certain asynchronous event, when a general information probe 
may obscure specific details.

We see  two ways to  approach  annotation distinction.  The first  one is  to  create  a  highly 
specialized, quick execution probe for every possible asynchronous event. This limits growth of the 
infrastructure because a new event must be added to the infrastructure in order to accommodate 
new asynchronous events. This also complicates programmer productivity because of the ample 
gamma of probes to use and to choose from. The second solution is a general probe that utilizes 
different  parameters  so  it  can  distinguish  the  different  event  types.  This  is  simple  for  the 
programmer because he only has a very limited amount of probes to choose from, but probes are 
generally inefficient and not very expressive of the particular event. Our choice is a mix of the two 
former solutions. We have grouped asynchronous events into tight families and we add a couple of 
parameters to permit distinction between each family of events. Namely, our information probe 
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families are three: thread calling, message passing, and data streams. The additional parameters 
proposed  are:  Label and  Level.  These  two parameters  permit  us  to  give  a  name to  each 
individual event or to a group of events, and also to give it a priority or importance. The level 
attribute should be considered similar to debugging levels used by logging frameworks such as 
Log4j  [Log4j].  These  parameters  are  specific   enough  to  permit  a  programmer  to  properly 
distinguish asynchronous events of interest with ease.

It is necessary for the information probes to not only identify when an asynchronous event has 
taken place, but also to obtain specific information from the application. For example, to follow 
causality in a message queue it is necessary to identify when the message is placed on the queue 
and when it is removed. This requires the use of message IDs. IDs are not limited to messages, and 
can be used for threads, message queues, ports, sockets, etc. An ID can be utilized for any entity of 
the application that requires it.

The information probes, and the solution in general, do not specify how to implement ID passing 
nor do they propose an infrastructure for doing this. In our implementation we leave it up to the 
programmer to support artifact IDs, for example, when passing messages it is up to the application 
to  support  the passing  of  the message ID.  In  many cases the implementation of  IDs may be 
simplified thanks to the platform. Utilizing the same example as above, a message placed on a 
queue can use its memory address as its unique message ID, simplifying ID propagation. Avoiding 
the need to directly propagate IDs makes the tracing infrastructure as “light” as possible since 
calculations and storage of IDs are kept to a minimum. The effort  invested from the programmer is 
minimal. In order to minimize effort for inserting annotations, the annotations could be inserted 
directly into underlying libraries in order to make asynchronous event handling transparent for 
applications that use these libraries. This is a solution chosen by Causeway [Chanda et. al, 2005] 
and SDI [Reumann et al., 2004] and has many disadvantages. For example, the granularity is not 
fine-grained and is limited to library calls. Also, the solution is static and affects all applications 
running, creating a constant overhead. Asynchronous events that do not use instrumented libraries 
go undetected. Finally, assumptions regarding how many messages are serviced by a thread must 
be fixed before hand, normally establishing that only one message is treated by a thread at a 
particular moment.

In general, the effort of inserting information probes is very small in well designed applications. 
Well designed applications should have asynchronous events wrapped in well determined method 
calls or functions that are easy to instrument. This means that even if an event occurs many times 
in  an  application,  the  function  that  causes  it  is  generally  written  only  once  and  has  to  be 
instrumented only once. Code modifications are necessary in very specific points, and this provides 
support for rapid and deterministic causal path detection.

3.3.3 Proposed annotations
The proposed annotations are for implementation in component models, but are not based on the 

particularities  of  any  particular  platform or  implementation.  The  component  model  increases 
modularity and code decoupling and thus limits some forms of communication, like shared memory 
or shared variables. This is important because most implementations for thread synchronization 
rely on shared variables, thus forcing programmers to find new methods of implementation which 
are accepted in the component model, like message passing.

Some annotations may be seen as redundant since information may be directly provided by the 
platform. For example, Java does not distinguish threads as having a parent/child relationship, 
making all threads equal. Other platforms do provide this relationship, so the annotation for this 
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relationship  would  not  be  necessary.  The  annotations  provided  should  suffice  for  an  easy 
implementation in different platforms utilizing different technologies. Platforms that provide more 
information for asynchronous events provide a means for reducing the number of annotations 
used. Eventually, if enough information is directly provided by the platform itself, the annotations 
would be unnecessary,  and all  the  asynchronous events  could be automatically  detected and 
analyzed. More general than the exact syntax of an annotation, the following annotations show 
what information is necessary for causality analysis of asynchronous events.

3.3.3.1 Thread creation and thread pools
Threads are system entities created to execute instructions. Threads belong to a larger entity, a 

process, where every process has at least one thread. We focus on single memory space, single 
process applications. In these applications, there may be multiple threads interacting throughout 
the system. In order to utilize a thread, the thread must be created or an existing thread may be 
utilized, for example, by calling a thread pool. To properly determine causality and follow requests 
in an application that creates threads or uses thread pools, we are required to know the ID of the 
calling thread, the ID of the called thread, the moment the asynchronous event occurs, and finally, 
in which component it occurs. This information is sufficient for causality analysis when we make a 
couple of assumptions. The assumptions we make are: 

1 Each thread that is currently available has an individual, application unique, ID. 
After a thread dies this ID may be reused.

2 A thread is causally dependent to only one thread at a time, its caller. That means 
that a thread cannot be called to perform two tasks from different threads at the 
same time. In the case of thread creation, the execution path of the created thread is 
dependent of the thread that created it. For thread pools, the execution path of the 
called thread is causally dependent only of the last thread that called it.

3 Every task that a thread performs is causally dependent of the caller thread and is 
associated with the execution path of  the caller thread unless clearly expressed 
otherwise  (more  details  on  causality  decoupling  in  section  3.3.3.4 Independent
execution).

Finally, we propose the following annotation for thread task delegation.

Thread_Called(Callee_Thread_ID,Called_Thread_ID,Type,Label,Level)

Callee_Thread_ID The ID of the thread that performs the call.

Called_Thread_ID The ID of the thread that is called and executes the delegated 
task.

Type Thread Create or Thread Pool.

Label Generally  a  string  that  relates  a  name  of  the  particular 
information probe or of a group of information probes in order 
to distinguish them.

Level A positive integer that indicates the importance or priority of 
the  information  probe.  The  lower  the  integer  the  more 
important the probe.
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Figure 7: Thread pool/Thread creator.
Shows an abstraction of a component that uses a thread pool. Execution paths fork after the 
component into different components. The thread that is called is causally dependent to the  
thread that called it. Thread annotations make this information visible to external applications.

As shown in Figure 7, the thread_called annotation provide a means of identifying which 
components create threads or utilize thread pools.

Optimizations  and  simplification  of  annotations  are  possible  when  the  platform  provides 
additional  information.  For  example,  if  direct  support  of  thread  relationships  exists  (e.g. 
parent/child relationship), it would not be necessary for programmers to insert the annotation that 
identifies thread creation. This particular optimization implies that the tracing infrastructure would 
not know exactly when a thread was created, but once the newly created thread performs a call 
and exits the component it was created in, it would cross through a dynamic tracer and then the 
parent/child relationship could be analyzed, creating the causal relationship.

3.3.3.2 Message Passing
Components communicate by sending each other messages. Messages are a unit of information 

utilized  by  the  application.  Messages  are  not  necessarily  the  same  size  and  how  they  are 
implemented  can  differ  depending  on  the  platform or  the  needs  of  the  application.  What  is 
important  is  that  messages  are  not  shared  across  components.  Once  a  message  is  sent,  the 
component that sent it no longer has access to the information.

Message passing is not always easy to identify. Message passing should not be confused with 
data streams, even if some implementations confuse the two concepts. For example, a socket used 
by a web-server for incoming requests operates like a data-stream, but the information obtained is 
grouped  into  a  single  request  that  is  treated  as  a  message.  That  way,  each  request  can  be 
considered as a message passed from the client to the web server, or vice versa, hence we should 
use a message passing annotation in this case. Other cases are usually much simpler, as a producer-
consumer application,  where threads produce messages and place them on a  queue for  other 
threads to consume. Message Passing information probes are to be used when a distinct, well 
defined message is passed between two entities and that message can be clearly identified. We 
propose the following information probes for message passing:

Message_Sent(Message_ID,Entity_ID,Label,Level)

Message_Received(Message_ID,Entity_ID,Label,Level)

Message_Read(Message_ID,Entity_ID,Label,Level)
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Message_ID Must be a unique message identifier for that entity. Messages are placed 
on entities, so the message id must not be repeated for the specific entity.

Entity_ID Must be a unique entity identifier for the application. This is used to 
uniquely identify message queues, sockets,  ports, etc.,  being used for 
message passing.

Label Generally a string that names the particular information probe or group 
of information probes in order to distinguish them.

Level A  positive  integer  that  indicates  the  importance  or  priority  of  the 
information probe. The lower the integer the more important the probe.

Message_Sent is to be inserted in the code exactly before a message is sent to a message 
entity. Message_Received is to be inserted immediately after a message has been read from an 
entity. This removes the message from the queue making it no longer reachable from other threads. 
Message_Read is to be used carefully in the case a message is read from the queue, but is not 
removed. This is for cases when a thread reads the message and another thread reads the message 
at a later time. Both threads from the point the message is read, are causally dependent to the 
thread that has placed the message.

Figure 8: Abstraction of message queues.
Shows an abstraction of a message queue communication model. There are different components  
that communicate with a component that stores a message queue. Threads enter the component and 
place or remove message from the queue. Message passing annotations make these events visible to 
external applications.

Because we study one application at a time, and the application lays in the same memory space, 
a simplification to the message queue annotations is to utilize the message address as its unique 
identifier. This is only possible when messages are passed by reference, like most object oriented 
platforms do. Supposing no message address is repeated in the application, there would be no need 
for an Entity_ID.

3.3.3.3 Data Streams and Files
We identify another two types of asynchronous events, namely data streams and files. At the 

moment we do not propose annotations for these types of events because these asynchronous 
events are causal relationships. Annotations should be simple. In order to create simple annotations 
for these cases many assumptions must be made. We will still analyze the events and we propose 
using bit-ranges to stock causal relationships between readers and writers of the channel. Data 
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streams are incoming and outgoing streams of information. These streams have differences with 
message passing, since the stream cannot easily be packaged as a single message. This implies that 
there can be differences between the amount of information written at once and then the amount 
of  information  eventually  read  at  once  (see  Figure  9),  creating  a  complicated  scenario  of 
overlapping causality between writes and reads performed on a stream. Data streams generally 
imply a FIFO ordering on the bytes that are sent.

Figure 9: Multiple processes access data stream.
Shows an example  of  multiple  processes  reading  and writing to  the  same channel.  The amount  of  
information can vary on every action and it is unclear which process has written information because the  
information is homogeneous. Causality tracking is complicated in these cases, but bit ranges could be  
stored for identifying causal dependency.

Files on the other hand do not  have FIFO ordering restrictions. Files, on disk or in memory, can 
be long streams of bytes with reads and writes performed in different places simultaneously. A 
possible technique for identifying causality within data streams and files is stocking a reference to 
the bit ranges that are modified by a particular thread. As shown in Figure 9, reads and writes do 
not have to be the same length, one read could overlap several writes when consulting these bit 
ranges, hence the read is now causally dependent of multiple writes.

Generally in an application, data streams can be wrapped and interpreted as messages, limiting 
the necessity of calculating complicated causal nestings within streams. There are applications 
where it is not possible to construct messages out of data-streams, and this is why we consider it a 
different case to analyze. Files, in difference with data streams, are frequently used and pose a 
potential  bottleneck  for  finding  causal  relationships  within  threads  because  of  the  overhead 
involved.  Complicated  stockings  of  information   imply  complicated  methods  for  analyzing 
causality.

As a note, the same technique used on data streams could be used as an optimization when 
performing  message  passing.  When  one  thread  continually  writes  an  extensive  amount  of 
messages, it would only be necessary to record the range of messages written and the thread who 
performed the write. Then, any reading thread would be causally related to the writing thread if 
his read is in the pertinent range. This optimization clearly improves memory usage and speed 
when one thread writes many messages continuously  because fewer references are stocked and 
less calculations are performed.

3.3.3.4 Independent execution
In many instances automatic causality tracking can be too strict and extensive and may not 

correctly interpret the intent of the programmer. In these cases we provide causality-breaking 
information probes to indicate that the following actions performed by the thread after execution of 
the annotation are now independent of the previous actions. 
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Generally, this should be used as a correction on programmers intent. For example, in a web 
server a thread may enter a cycle of indefinite duration to read incoming requests and delegate the 
tasks on new threads. These tasks are requests from clients. In this case you have two threads, one 
to  perform the  read  and  one  serving  the  request,  and  it  is  most  likely  the  interest  of  the 
programmer to  interpret each request  as  independent  from the thread performing the request 
reading. With our earlier annotations, decoupling these events was not possible. In this case a 
causality-breaking  annotation  should  be  inserted  in  order  to  force  decoupling  between 
asynchronous events. The proposed information node is:

independent_execution()

This information probe is used to express that the actions performed before are now causally 
independent of the actions to be performed after. This is useful for isolating events or for forcefully 
decoupling causality to better interpret the applications intent, or the intent of the developer.

Causality  decoupling  provides  a  certain  amount  of  improvements  regarding  memory  and 
execution costs. To understand this, we must analyze the context that annotations are used in. 
Annotations are used for constructing request execution paths (more on this in section  3.4 on 
Request tracking). When causality is decoupled, smaller execution paths are recorded in memory. 
Since the execution paths are smaller, they will conclude earlier and can be freed from memory 
sooner than a large and complicated execution path. Also, having smaller and less execution paths 
saved in memory would improve execution times because less comparisons and less searching is 
necessary to create the execution paths.

3.4 Request tracking

3.4.1 Overview
The term request is used by web-servers, but it is not limited to that domain. We apply the term 

request to a message sent from a client interface to a server interface of a component for treatment. 
These messages are serviced internally by the component. A message can be divided into smaller 
tasks and serviced by more than one thread at a time. An application may service multiple requests 
simultaneously,  and it  is  not  uncommon to  have multiple  threads  executing inside  the  same 
component, complicating request tracking.

We  propose  automatic  request  tracking  for  multi-threaded  component-based  applications. 
Request tracking correlates events produced from dynamic tracers and from the annotation toolkit 
to their originating request.  Dynamic tracers provide events regarding thread execution. These 
events are obtained at component borders and specifically are events regarding calls on component 
interfaces.  The  annotation  toolkit  produces  thread  communication  events  that  occur  inside 
components. Request tracking performs the analysis of these events and maintains a per-request 
record of the execution path and of the ramifications of that execution path. In essence, request 
tracking  identifies  and  records  causal  information  pathways  in  the  application.  Basically,  all 
activity in the application can be related to a message sent to one of the services provided by a 
component.
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3.4.2 Request execution paths
Request paths are the execution history or execution path of all threads that have serviced the 

request. They detail which components were involved in the treatment of the request. A request 
path can be interpreted as the call graph created from the servicing of a request, which may include 
multiple thread execution paths with asynchronous event links to unite them. Individual thread 
execution paths are associated with each other using asynchronous events, producing a complete, 
per-request, call graph that represents the components used for treating the request (see Figure 10).

Figure 10: Request execution path.
This figure is an example of a Request Execution Path. A request execution path shows the full list of components  
traversed by the threads that serviced the request, and their inter-component interactions. The component name  
and the time a thread has spent inside each component are recorded. The request path is composed of individual  
thread execution paths, that are linked utilizing asynchronous events. The thread execution path is determined  
using dynamic tracers. Links between thread execution paths are created using the asynchronous event toolkit. A  
thread execution path can be  compared to call graphs used commonly for profiling legacy applications.

Dynamic tracers provide information to construct the execution path of each thread. They are 
capable of  threads when they cross component boundaries and they provide enough information 
to create a per-thread execution path. Requests can be serviced by multiple threads. When a request 
of  a  service  is  made,  there  is  only  one  thread  that  initiates  treatment  of  the  request,  but 
asynchronous events provide a means of increasing the amount of threads that service a request. 
These asynchronous events are seen utilizing the asynchronous event toolkit.

A request  initiates  with one  execution path,  because there  is  only  one thread that  begins 
servicing. While servicing the message, an asynchronous event may occur causing a split from the 
original execution path. This creates two separate execution paths that service the same request. 
The asynchronous event serves as a union between these asynchronous paths.  We utilize the 
asynchronous event toolkit for creating these links because the toolkit provides information on 
causal information pathways in the application, which is the pathway the message in service is 
taking. The asynchronous event gives information concerning the thread ID that has caused it, in 
what component it has occurred, what kind of event it is, and at what time. In other words, we 
follow the path that the message in service takes, creating a branch when information is sent from 
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this thread to another, and we record a history of the components involved and the time spent per 
component. The end result is a series of “glued” together synchronized execution paths, using 
asynchronous events as the glue.

At the moment, only the amount of time a thread spends per-component is recorded, and the 
amount of time a message waits on a message queue. Time is information that is easily calculated 
across different platforms. Resource consumption is not easily calculated. In order to estimate per-
request resource consumption, like CPU cycles, network resources, disk resources, it is necessary 
for a low level event system to be utilized. This event system must provide information on the 
resources consumed by each thread. With that information it is only necessary to consult what 
request is being serviced by the particular thread and add the resource consumption to that request. 
It  is not our interest to work on an event system because they are platform specific,  and not 
portable. Resource consumption can be rapidly added to the request tracking mechanism if such an 
event system exists.

3.4.3 Modifying request tracking granularity
The granularity of request tracking is provided by the dynamic tracers. Tracers provide the 

request tracking mechanism with information regarding the boundaries of components and when 
these boundaries are crossed. In order to distinguish every component in the application, it  is 
necessary for a dynamic tracer to intercept every call between components. This causes overhead, 
and in some applications this might not be acceptable. If  coarse grain tracing is acceptable or 
preferred, an application can reduce the amount of dynamic tracers, causing the request tracking 
mechanism to view less components. The amount of threads that are viewed by the dynamic 
tracing infrastructure  would be the same, because the annotations themselves would not change, 
but the amount of components recorded in the request execution path would be less. Per-request 
statistics would remain the same, but since less components are distinguished, the per-component 
statistics would increase because the data from missing components would be added to components 
that are correctly distinguished, thus compensating for the missing components. Careful attention 
should be paid,  because incorrectly  placing  dynamic tracers  could  cause the request  tracking 
mechanism to miss requests being serviced. This is because a request is seen by the infrastructure 
when the first thread that services the request passes through a dynamic tracer.

3.4.4 Request consumer mechanism
The request granularity of a workload has already been proposed for workload profiling in web 

servers.  We  propose  utilization  of  requests  for  profiling  component  based  applications.  This 
granularity better serves profiling applications, and helps in improving application performance 
and in debugging applications.

Our application does not provide any workload profiling nor does our work focus on profiling 
techniques.  We do feel  a  need to respond to the necessity of workload profiling, so  we have 
provided a request consumer interface. External applications can subscribe to events produced by 
the interface in order to perform application profiling. Each time a request is  completed or is 
terminated, the request tracking mechanism sends the request execution path to all subscribers. The 
subscribers are free to analyze the request using any technique they implement. At the moment 
profiling  is  limited to  temporal  statistics  because we have  not  provided an event  system for 
resource  consumption.  This  event  system would provide  workload profilers  with  much more 
information for characterizing the application under study, but event systems are platform specific.
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3.5 Context propagation

3.5.1 Overview
Metadata is non-functional application data that is associated with functional application data. 

Metadata is handled externally from functional data, providing a separation between functional 
and non-functional concerns in an application. This separation promotes component reuse because 
different applications can use components in different non-functional contexts, or vice versa, the 
same non-functional concerns may apply to different components. It is our interest to permit an 
application  to  transparently  and  separately  manage  metadata  by  creating  a  meta-application 
infrastructure. For this to be feasible we must correctly deduct causal relationships between the 
activities that occur in an application. Our dynamic tracers and our information probes make causal 
information paths visible, providing enough information to correctly propagate context throughout 
an  application.  These  causal  pathways are  analyzed by the  request  tracking  mechanism.  We 
propose requests as the application entity to be used for metadata propagation.

Request tracking provides the basis for our automatic metadata propagation infrastructure. We 
believe that metadata should be managed utilizing a request as the base granularity. This continues 
our idea to represent application activity at a per-request granularity. Metadata is grouped into 
contexts and propagated along side application data. Context is the base unit for non-functional 
data propagation. A context is associated with an entity in the application, being either a message, 
a request or a thread. A context must follow causal pathways as does functional data, maintaining 
this association throughout the treatment of the request. We propose two novel types of context, 
request  context and  message context.  We provide  an  automated mechanism for  propagating 
context through an application, and a callback mechanism in order to access and modify contexts. 
Our  automatic  propagation  mechanism  relies  on  request  tracking  and  fully  respects  causal 
information pathways. Contexts are accessed using callbacks. A callback is additional functionality 
that is added at component frontiers. Callbacks are associated to dynamic tracers, because tracers 
interrupt component calls at component borders. Dynamic tracers halt a thread at the boundaries 
for two purposes; one, real-time construction of the request path and metadata propagation, and 
two,  execution of  meta-applications by means of  callbacks.  Context  propagation is  performed 
automatically and transparently in regards to functional components of the application.

3.5.2 Metadata key­value pairs
Metadata is a key-value pair that is saved in a context. Contexts contain a group of metadata 

and can be per-request or per-message. (Details regarding message contexts and request contexts 
are given later.) Each of these types of contexts records metadata in the same fashion, but they are 
propagated differently. Metadata can be added to a context, removed from the context or modified.

We propose two functions for treating metadata.  These functions are simple getters and setters 
for metadata key-value pairs. It is important to note that since there are two different contexts 
associated with an entity at  a time,  we propose a separate function for treating each type of 
context. The first type being the request context, and the second the message context, which will 
both be explained later.

get_message_metadata(Key) returns Value

get_request_metadata(Key) returns Value
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set_request_metadata(Key, Value)

set_message_metadata(Key, Value)

The  get functions  search  for  metadata  that  matches  the  provided key.  When found,  the 
metadata value is returned. If there is no metadata matching that key then a null value is returned. 
The  set functions  add metadata  to  the  context  and modify  existing  metadata  by means of 
overwriting it. If there is no metadata matching the key provided then the metadata is added to the 
context. If there is already a matching key, then the metadata is overwritten with the new value.

In  general,  these  get/set functions  provide  the  necessary,  but  minimal,  functionality  for 
administrating metadata in an application. Eventually these functions could be extended to include 
much more metadata functionality or to optimize certain operations. For example, if a user wishes 
to update a value he must first perform a get to view if the metadata exists and to retrieve the 
metadata value, then perform a compare if necessary, and finally perform a  set to insert the 
value. For the time being our get/set functions are sufficient for our purposes of constructing a 
meta-application infrastructure.

3.5.3 Request context (global context)
Request tracking, as explained earlier (see section  3.4 Request tracking),  records information 

regarding which thread is servicing which request. This information permits us to relate a request 
context to all entities servicing the request. This context can be seen as a global context because 
there can be multiple threads or messages that reference it (see Figure 11). If the request context is 
modified,  either  by  adding,  removing  or  changing  its  metadata,  these  modifications  will  be 
instantly  seen by all  entities  of  the  request.  Request  contexts  are  propagated through causal 
pathways. A request context, when created, is associated with a thread. When an asynchronous 
event occurs, the context continues its association with the thread that caused the event, and is 
now also associated with the entity that is causally dependent of the thread.

Figure 11: Request context.
We show how request contexts are referenced and how they propagate across asynchronous events.  
At each asynchronous event, the request context remains untouched. The dependent entity now 
references this request context, providing shared metadata between entities pertaining to the same 
request. Modifications to the context are viewed by all entities of the request

Some of the uses for a per-request context are security, priority, QoS, etc. A request can save 
metadata related to non-functional concerns of the application. This metadata can be accessed and 
will affect every entity of the request. An example of utilization is resource limits. For example, 
requests are permitted to consume a limited amount of resources. When servicing of a request 
starts,  the  resource metadata  is  set  to  zero.  When  servicing  continues  and  resources  are 
consumed, the request context is updated. If the request exceeds the permitted limit, the request 
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can be canceled. Cancellation is  not directly supported, but threads can poll  to view resource 
consumption and cancel execution if limits are exceeded.

3.5.4 Message context (local context)
A per-message context is related to the message being treated or stocked. Per-message contexts 

are stored within a thread context up to the point where an asynchronous event happens. At 
asynchronous events the context is copied and an independent, but identical context is created and 
stored with the asynchronous event (see  Figure 12). A modification of the per-message context 
after an asynchronous event is local and does not affect the original or any other context. For 
example, if a thread places a message on a message queue, the context of that thread is saved until 
the  point  the  message   is  received,  and  the  context  is  then  added  to  the  thread-context. 
Modifications are only viewed “downstream”, since the context is propagated and duplicated after 
these modifications happen.

Figure 12: Message context.
We show how message contexts are referenced and how they propagate across asynchronous events. At  
each asynchronous event, the message context of the entity that initiates the event is duplicated. Each 
context  is  now  independent  and  propagated  separately  through  the  application.  Modifications  to  
metadata in a particular message context are not visible to other contexts.

There are a series of uses for per-message metadata. Message contexts are used when a metadata 
is provided that is required at specific points later in the execution path. For example, if we analyze 
a two stage web-server, where the request is divided into two parts, the first one serviced by the 
stage that controls the dynamic content, while the second part is serviced by the stage that controls 
database access. If we were to control resource consumption, we can provide independent limits for 
each stage. CPU usage for the first stage would naturally be higher, than that of the second stage. 
Accessing the database implies disk usage, so the disk-resource limit would be higher in the second 
stage. With message contexts, the metadata type could be repeated across the application, with 
different values, and modifications to metadata are local. Other examples regarding priority or 
quality of service can also be imagined.

3.5.5 Handling multiple contexts
A thread can be causally dependent of different asynchronous events that, in essence, create a 

dependency link between various  execution paths.  Since these execution paths may reference 
contexts, the natural thing to do is now have dependent thread reference these same contexts 
because of the causal dependency. This is explained earlier where message contexts are duplicated 
and are specific to causally dependent entities and request contexts are associated by causally 
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dependent  entities.  We have not  evaluated,  until  now, the possibility of  a  thread referencing 
multiple contexts because it is dependent of multiple execution paths.

Figure 13: Multiple contexts. 
We show that multiple contexts can be assigned to a thread. This is normally caused from multiple  
asynchronous events, of which this thread depends (e.g., reading messages from message queues). In 
order to respect causal dependencies, the contexts must be each taken into consideration, not only  
overwritten by the newest context.

To better understand the problem we shall start with a simple use-case. For example, a thread 
may read two messages from a different queues in order to execute a particular task. Supposing 
both messages reference a message context and a request context, we must analyze how to manage 
multiple contexts of the same type (see Figure 13). The following is a list of examples that must be 
dealt with and have not been considered by other solutions because existing solutions have limited 
causal dependency to only the last causal event. 

• You may erase older contexts and replace them with newer contexts, limiting the amount of 
referenced contexts of each type to only one. This solution is used by Causeway [Chanda et.
al, 2005] and SDI [Reumann et al., 2004], although they only reference one type of context 
each. It is chosen because they both assume that a thread treats only one message at a time. 
This means that the thread is causally dependent to only the last asynchronous event, 
which is often untrue and is also too limiting in many cases.

• You may have a thread reference various contexts of each type. The difficulty here is now 
related to providing a straightforward access to the metadata. It may be difficulty to expect 
a user to completely understand and know how many or what contexts are related to the 
specific entity at one precise moment. In fact, it is our supposition that a user does not know 
all causal dependency at a specific moment, as a part of our contribution is to provide an 
infrastructure to improve his understanding.

• You may create a union of contexts, overwriting only metadata that is repeated. When an 
entity  is  dependent  of  two  contexts,  you  analyze  each  context  and  create  only  one, 
enlarged, context, containing each type of metadata without repeating. This would imply 
overwriting metadata values of types that our duplicated. This is a mix of the two former 
solutions because most elements of each context are preserved, but we eliminate repeated 
information. In fact, if a user accesses a context and expects a particular type of metadata to 
be there he will find it, although it might not contain the value he would be expecting to 
see.

In  order  to  make  things  as  clear  as  possible  for  a  user  we must  try  and  make  context 
modifications as local as possible. We have slightly different solutions for each type of context. In 
the case of two message contexts that become related to the same entity, we unify them into one, 
creating an enlarged context. We perform this feat by overwriting repeated types of metadata with 
the value inside the newer context. This solution is local since a message context is unique to an 
entity, only affecting events that follow “downstream”. 
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The previous solution works well with message contexts, but it is unacceptable with request 
contexts, because a request context can be referenced by many entities at a time, and mixing 
request  contexts  by  overwriting  repeated  metadata  types  can  modify  other  entities  expected 
behavior,  not  to  mention  making it  very  complicated  to  understand where a  metadata  value 
actually  came from or  why it  was  modified.  We this  in  mind,  we wish  to  make  metadata 
modifications local, since multiple dependency, which is the factor that causes multiple contexts, is 
also local. Our decision is to have an entity relate to more than one request context, saving the 
precise order of relation. This makes newer referenced request contexts more important than older 
ones. As before, we fall into the problem of handling repeated metadata types because two contexts 
can have the same metadata type. The solution, which is simple and can be eventually modified, 
consists in searching for the first metadata type that falls under the users search criteria. This 
makes the order in which the request contexts were saved important, since the newest reference 
added will be the first request context searched. To treat modifications to metadata values or 
adding new metadata key-value pairs we follow the same philosophy of newest context first. This 
means that new metadata is added to the newest referenced context and that modifying existing 
metadata is done by searching the contexts for the metadata type from newest to oldest until 
found.

Treating multiple contexts is complicated and our solution is by no means perfect. We provide a 
solution based on our suppositions of what a programmer would expect. There are cases that we 
can imagine where our solution is by no means the preferred one. Also, we should not forget that 
these  entanglements  of  causally  dependent  information  are  less  common than regular  causal 
dependency, but there are many applications where they do occur and it is necessary for them to be 
treated according to the programmers intent.

Eventually, we could provide many different multiple context treatment methods and have the 
user specify which one he would prefer to use, or to propose his own management system. For 
example, a context priority could be used to specify that metadata in one context is more important 
than metadata in another, enabling priority metadata to overwrite other metadata. For the moment 
our solution is sufficient in providing automatic causality-respecting context propagation. Further 
pursuing the subject is beyond our immediate scope.

3.6 Callback infrastructure

3.6.1 Overview
A callback is executable code that is passed as an argument to other code. Usually, the code is 

passed as a pointer or handler to another function. In this case when a certain event happens or a 
particular piece of code is reached, additional or user described functionality can be executed. In 
component  applications,  callbacks,  are  themselves,  implemented  as  components.  Callbacks 
components implement non-functional concerns of an application. We propose implementing non-
functional  concerns  at  component  borders,  as  to  disturb  as  little  as  possible  component 
functionality, providing a means to modify non-functional concerns at runtime and to increase 
modularity and component reuse. Callback interaction takes place when a thread enters a tracer. 
The tracer that is executing will notify the tracing infrastructure of the event. These events include, 
but are are not necessarily limited to, the following events:

• A server interface method is about to be executed, namely a “pre” method.
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• A server interface method has finished, namely a “post” method.

• An error has occurred during the execution of the server interface method.

The tracing infrastructure must provide an client interface that notifies the callback manager of 
the event. If there is a callback associated with the event and the tracer in question, the callback is 
executed. Callbacks have access to application metadata. A callback is permitted to access and 
modify metadata  associated with the information that the thread which executed the event is 
servicing. Operations on both, request context and message context, are permitted, but are limited 
to the contexts associated with the information being currently serviced. Callbacks cannot modify 
other request or message contexts.

At the moment we propose no limits on code that is executed by callback components, so 
special attention must be paid in order to avoid crashing an application or modifying undesired 
parts. Safe execution of callbacks could be supported in later versions.

3.6.2 Callback components
A callback component should be used for accessing, adding, removing and modifying metadata. 

Callbacks can perform decisions regarding execution of the application based on metadata values. 
This extracts meta-application behavior from the application, and it also makes meta-applications 
dynamic,  since  the  callback  components  can  be  added  and  removed  at  runtime.  In  general, 
callbacks  are  used  for  all  non-functional  concerns  an  application  may require,  such  as  QoS, 
security, prioritizing requests, resource consumption analysis, etc.

Callback components should be created using a callback component factory. The idea is to limit 
the need for a user to be disturbed with the implementation of the meta-application infrastructure, 
and in particular with the callback infrastructure. A component factory creates a component that 
corresponds to  the  functionality  that  the  user  describes  for  each  of  the  events  supported  by 
callbacks (i.e., pre, post, error). Then the component can be used and added to the meta-application 
infrastructure to interact with the metadata of the application. As a note, adding the component 
into the meta-application is not the same as defining meta-application interaction points. Meta-
application inter-action points are described next.

3.6.3 Defining callback interaction points
Callback interaction points must be provided by the user. The callback components themselves 

are housed in the meta-application infrastructure, but the interaction points of callbacks are directly 
associated to dynamic tracers, because dynamic tracers interrupt normal execution at component 
boundaries. A user of the system then then specifies the interfaces in the application where a 
callback component should interrupt normal execution and provide additional functionality. The 
meta-application infrastructure  then associates  the  interfaces  provided to  the  dynamic tracers 
intercepting calls on the interface. There can be more than one callback associated to the same 
interface. This gives the user the possibility of generalizing meta-application behavior to different 
parts of the application, instead of having to add functionality one interface at a time. In essence, 
this means that one callback component can be called, possibly simultaneously, from different parts 
of  application  code.  When selecting  where  to  implement  callback components,  there  may be 
overlaps  with  other  callback components.  This  provides  extra  functionality  and differentiates 
callback behaviors,  encompassing them into independent objects. Callbacks must be prioritized 
because  callback  components  may  modify  metadata,  altering  posterior  callback  component 
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behavior.  Components with higher priority are executed first,  and components with the same 
priority are executed in order of assignment to the interface.

3.7 Profiling
Profiling is one of the purposes of creating our infrastructure, but it is not directly performed by 

our infrastructure. We believe that a request granularity is useful for analyzing workload and 
application performance for all component applications. We provide a profiling interface, where 
profiling clients can subscribe to request execution path information. Each subscriber receives the 
request execution path of a newly completed request. The execution path includes, at the moment, 
all components traversed, all threads used to service the request, the asynchronous communication 
points and the amount of time each thread has spent in each component.

Resource consumption is also important to follow. At the moment we do not address this issue, 
because resource consumption requires a low-level event system and is fully dependent of the 
platform. The events required by our infrastructure for analyzing per-component and per-request 
resource consumption must indicate the amount of resources consumed by each thread. The meta-
application infrastructure would then be able to add these resource consumption events to the 
appropriate request execution path record. Utilizing event systems like Event Tracing for Windows 
or newer propositions like JSR-000284 Resource Consumption Management API, would provide our 
infrastructure with the necessary information to add this functionality.

3.8 Comparison to other projects
We have compared our project and contribution to the projects that we studied in the state of 

the art. This comparison will show the differences between our work and existing solutions. We 
shall emphasize our advantages over the existing solutions. 

3.8.1 Comparison with DTrace
DTrace  [Cantrill et  al.,  2004] focuses on understanding how applications and the operating 

system interact as one. DTrace is implemented specifically for the Solaris operating system. Our 
project is focused on single component based systems in general, not any particular platform. We 
provide a  general  mechanism that  can be implemented,  although with small  modifications or 
platform specific optimizations, on many different platforms and in many different component 
models. As such, our solution is platform independent, unlike DTrace. Systemtap  [Prasad et al.,
2005], a DTrace clone for Linux, has shown just how difficult it is to migrate the DTrace solution.

DTrace's instrumentation uses probes to insert code into running applications or the kernel. 
These insertion points or hooks are generally predefined and may even require modifying the C 
compiler in order to be inserted. Many of the probes are by far dynamic, and are introduced into 
applications by providing hacks. Our solution relies on the intricacies of the component model to 
provide dynamic instrumentation. Also,  we provide request  tracking,  context  propagation and 
application management. DTrace avoids modifying execution of applications in order to maintain a 
completely safe policy.
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3.8.2 Comparison with Project5
The algorithms proposed by Project 5  [Aguilera et al.,2003] have many disadvantages. First, 

they are statistical so no individual calls can be distinguished. They provide a very general vision 
of  how  components  interact  and  which  components  cause  bottlenecks.  The  algorithms  are 
performed offline because they are costly and because need a large amount of traces in order to 
correctly infer causality. Traces are a whole entity that are used to perform the calculations, that is, 
you can not calculate causality on one set of traces and then add another set of traces at a later 
time. Because the amount of traces is large, calculation times can be long, which makes them not 
useful for performing real-time decisions on application performance. If during the time traces are 
being obtained the workload on the distributed system is altered or differs, the results will show a 
generalized analysis of the workload, making it difficult to understand the system or it may cause 
programmers to come to erroneous conclusions. 

In comparison with our work, Project5 is much less invasive but is performed postmortem and 
is only a heuristic. Our work is deterministic and much more fine grained, since we distinguish 
single  components  inside  of  a  larger  application,  instead  of  individual  nodes of  a  distributed 
system. Statistical analysis calculations are costly and it is only a  “best-guess” calculation, and 
individual calls are not identified. We call Project5 a “best-guess” approach because correlation 
does not imply causality, and this is a basic fault of both of these algorithms. Also, aberrant or 
seldom occurring behaviors of an application are completely discarded. We can, on the other hand, 
analyze a single petition or request  in the system, distinguishing every component utilized to 
service the petition and every thread used, making it possible to study and analyze application 
behavior in a fine grained and real-time manner.

3.8.3 Comparison with Magpie
 Our solution is of a higher level than Magpie [Barham et al., 2003] because we focus at the 

component  level.  We avoid platform dependent  solutions,  like  resource consumption analysis, 
which  is  based  on  low-level  event  infrastructures  that  would  depend  on  the  specific 
implementation of the component model. Instead, we insert dynamic interceptor components inside 
the application to study it, making the solution feasible for any implementation of the component 
model, supposing they support dynamic reconfigurations. Magpie does not modify application code 
but  must  instrument  communication  channels  and  utilize  event  libraries  to  perform  request 
tracking. Our project, at the expense of inserting inter-code annotations which we feel is a minimal 
and simple effort, obtains a correct request path with low cost calculations and is a completely 
deterministic effort. These simple annotations remove the necessity of having complicated event 
schemes  which  themselves  are  error  prone  to  produce  and  require  a  certain  expertise  and 
understanding of the application.

Magpie performs modifications to communication channels which cause permanent overhead 
on  the  running  applications.  These  modifications  even  affect  applications  that  are  not  being 
studied. The modifications are application specific and need to be modified for every application 
that is studied on the system. The models used to perform partial joins over the events in order to 
construct the request history are completely dependent to the application, and can not be reused. 
Our work requires a small effort to insert annotations into the application under study in order to 
correctly  view  asynchronous  events  and  reliably  construct  request  paths.  Other  than  the 
annotations, request tracking is fully automated and completely dynamic, making it feasible to use 
in production environments.
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Finally, our infrastructure is a meta-application infrastructure used for component models and 
also based on the component model itself. It runs parallel to the applications it analyzes, and does 
not affect other applications in the system.

3.8.4 Comparison with Causeway
Causeway [Chanda et. al, 2005] is used on multi-tier applications and thus, is very large grained 

in their meta-application interaction points. Causeway's static modification of the kernel and kernel 
libraries causes overhead on all instrumented system calls, even when Causeway is not in use. Our 
solution is dynamic and the instrumentation is application centralized, instead of OS centralized. 
The instrumentation does not affect other applications and can be inserted and removed even at 
runtime.

We provide a unified granularity for both, application management and application analysis. 
Causeway has focused on controlling applications only at external communication points. This is 
large-grain and not useful for great variety of applications. We provide fine-grain interaction and 
interception points in the application. We provide novel types of metadata, namely request and 
message contexts. Causeway does a simple  copy/paste of metadata on communication channels. 
Another limitation of is that a thread is considered causally dependent to only the last event or last 
entity that it has interacted with. That is, a thread only holds the metadata related to the last 
information read from one of the instrumented system channels, nothing more. We suggest that a 
thread should be dependent to all events that have occurred before, unless specifically specified by 
the programmer. Because we respect causal dependency, we have provided methods for treating 
multiple contexts, and for decoupling causal dependency. Our solution is based on programmer's 
intent.

Causeway's  choice  to  piggy-back metadata  on  threads  causes  a  constant  overhead  which 
eventually limits the size of metadata. Every system call implies a transfer of metadata from the 
user-level thread to the kernel-level thread. Our solution saves references to metadata so when an 
asynchronous event  occurs,  and only when asynchronous events  occur,  message contexts are 
duplicated, because they are entity specific, but request contexts are referenced. These operations 
only happen when information is passed, not at every system call. Unlike Causeway, there is no 
threat of surpassing the overhead limit when associating new request contexts.

3.8.5 Comparison with Defensive Programming
We both utilize a set  of  inner-code annotations to  provide us with necessary information. 

Although the information obtained and the way it is used is very different, the basic idea that 
programmers should take an active role in activities other than functionality, for example defense 
or  tracing,  is  the  same.  The  annotations  used  for  defensive  programming  describe  resource 
consumption,  while  our  annotations  describe  asynchronous  events.  Resource  consumption 
annotations not only obtain information, but they affect the control flow of the system. Control 
flow is specified by the annotation and is specific to DoS defense. Our annotations are simpler and 
do not change the execution of the program5. There are no extra control functions added, just a 
quick evaluation of the event in order to correctly construct the request path. Controlling execution 
in our solution is dynamic, fine-grained and done automatically at component borders. We provide 
a means of creating abstract meta-applications. 

5 Annotations do not modify execution, but our meta­application infrastructure by means of callbacks does provide 
a means for controlling and modifying execution flow.

­­ 48 ­­



3.8.6 Comparison with A Posteriori Defensive Programming
The most important aspect of their work is that annotations can be applied after the design and 

implementation of a component and without modifying neither of them. It is possible to add DoS 
protection to an already deployed application using AOP techniques. This gives way to the a 
posteriori naming of the approach. The main defect in their work is the utilization of an annotation 
parser at runtime. It causes a constant overhead that we feel unacceptable. This is mainly because 
of their dependency on AOP technology, and the current limits that exist in AOP. Our annotations 
must be inserted into functional code, as they cannot be expressed separately because of the fine 
granularity required. This limitation has forced us to look at other options. We obtain dynamicity 
utilizing various technologies, namely a binary code parser (ASM [ASM]) and a Java tool (JVMTI 
[JVMTI])  for code hot-swapping at  runtime.  This solution is  more difficult  to  implement and 
depends  much more  on  the  platform at  hand,  but  provides  a  fast  manner  of  activating  and 
deactivating instrumentation. This platform dependency of our particular solution does not limit 
similar techniques being implemented in other component models.

3.9 Summary
In this chapter we have presented the necessary techniques and information for automated 

request  tracking,  context  propagation and meta-application functionality.  We present  dynamic 
instrumentation  in  component-based  applications  by  means  of  dynamic  tracers.  We  give  a 
thorough analysis of asynchronous communication events that exist in component applications and 
how to follow causal information paths through the application. We have paid special attention to 
correctly  interpreting  causal  pathways  in  the  application,  and  to  providing  dynamic 
instrumentation and interception points.  We also have proposed two novel  forms of contexts, 
namely  message  contexts  and  request  contexts.  The  solution  provides  unified  fine-grained 
instrumentation for both, application analysis and for application management. Finally, we have 
provided a comparison to the most important projects in the application analysis and application 
management domains respectively.
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4 Implementation

4.1 Overview
We have developed our meta-application infrastructure using the Fractal Component Model 

[Fractal]. Fractal is under constant development and provides all of the functionality required for 
implementing our infrastructure. Specifically, we have used the Julia [Julia] implementation of the 
Fractal Model. Julia is the reference implementation for Fractal and is written in Java. We have also 
used other technologies that are for Fractal and also some technologies that are platform specific to 
Java. FScript is a script language that provides functionality for introspecting and reconfiguring 
Fractal applications at runtime. It is useful for inserting dynamic tracers and assigning interaction 
points for the meta-application. Creating dynamic annotations is particularly time-consuming and 
has  not  been  implemented.  The  solution  for  the  Java  platform  relies  on  using  a  bytecode 
manipulation tool [ASM] and JVMTI [JVMTI], a Java tool for code hot-swapping.

The infrastructure is constructed in three basic parts. The first part is the Dynamic Tracer 
Manager. This part of the infrastructure performs dynamic application instrumentation. Dynamic 
instrumentation is performed using both dynamic tracers and the asynchronous event annotation 
toolkit. Tracers are small components that are constructed with two purposes: first, they register 
inter-component calls that occur in the application, and second, they control the execution flow in 
the application. Controlling execution provides the necessary time to analyze the events in order to 
construct the request execution path and also provides an instrumentation point in the application 
for interposition and meta-application interactions. The annotation toolkit provides information 
regarding inter-thread communication in order to deduct request execution paths and to perform 
context operations.  The second part of the infrastructure, the Request Tracker, constructs the 
request  execution  path  and  performs  context  related  operations.  These  operations  include 
duplicating contexts, aggregating contexts and creating new context references. The final part of 
the application, the Callback Manager provides the meta-application functionality. It is charged 
with  executing  callbacks  at  interception  points.  These  parts  are  coordinated  using  the 
Administrator component.  Its  purpose  is  to  handle  events  between  different  subsections, 
provide requests to exterior request consumers, and to associate Tracers to Callbacks.
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Figure 14: Conceptual view of the implementation.
The figure provides insight on the activities performed by each subsection of the infrastructure. The Trace Manager 
instruments the application using dynamic tracers. The Request Tracker analyzes events that occur in order to 
construct  request  paths  and  handle  contexts.  The  Callback  Manager  provides  interaction  points  for  meta-
application functionality. The Meta-application Administrator directs the whole application, manages tracer – 
callback relationships, provides external applications with profiling and workload information.

In section  4.2 we present the context in which we have implemented our infrastructure. We 
have chosen the Fractal Component Model. We explain Fractal and provide an introduction to its 
reference implementation, Julia. Also, we give an introduction to FScript. In section 4.3 we present 
the architecture we have designed for the meta-application infrastructure. It is divided into three 
different architectural elements. They are all coordinated using an Administrator component. 
The first part explains application instrumentation using dynamic tracers and annotations. The 
second  is  charged  with  constructing  the  request  execution  path  and  handling  contexts  by 
interpreting the events produced from the instrumentation. The last part explains how we provide 
interaction points using Callbacks for meta-applications constructed using the architecture.

4.2 Implementation Context

4.2.1 Fractal Component Model
Fractal [Fractal] is a modular and extensible component model that can be used with various 

programming  languages  to  design,  implement,  deploy  and  reconfigure  various  systems  and 
applications,  from operating systems to middleware platforms and to graphical user interfaces. 
Fractal is also a project with several sub projects, dealing with the definition of the model, its 
implementations, and the implementation of reusable components and tools on top of it.

The Fractal component model heavily uses the separation of concerns design principle. The idea 
of this principle is to separate into distinct pieces of code or runtime entities the various concerns or 
aspects of an application: implementing the service provided by the application, but also making 
the application configurable, secure, available, ... In particular, the Fractal component model uses 
three specific cases of the separation of concerns principle: namely separation of interface and 
implementation, component oriented programming, and inversion of control. The first pattern, also 
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called the bridge pattern, corresponds to the separation of the design and implementation concerns. 
The second pattern corresponds to  the separation of  the implementation concern into  several 
composable, smaller concerns, implemented in well separated entities called components. The last 
pattern corresponds to  the separation of the functional  and configuration concerns:  instead of 
finding and configuring themselves the components and resources they need, Fractal components 
are configured and deployed by an external, separated entity.

The main goals of the Fractal component model are 
to  implement,  deploy and manage (i.e.  monitor and 
dynamically  reconfigure)  complex  software  systems. 
These goals motivate the main features of the Fractal 
model: composite components (to have a uniform view 
of  applications  at  various abstraction levels),  shared 
components  (to  model  resources),  introspection 
capabilities  (to  monitor  a  running  system),  and 
configuration  and  reconfiguration  capabilities  (to 
deploy and dynamically reconfigure an application). 
But  another  goal  of  the  Fractal  model  is  to  be 

applicable to  many software,  from embedded software to  application servers  and information 
systems. Unfortunately, the advanced features of the Fractal model have a cost that is not always 
compatible with the limited resources of constrained environments.

4.2.1.1 External component structure
Depending on the level of observation, or scale, a Fractal component can be seen as a black box 

or as a white box. When seen as black box, i.e. when its internal organization is not visible, the 
only visible details of a Fractal component are some  access points to this black box, called its 
external interfaces (see  Figure 15). In order to invoke operations on a component interface, one 
must first identify the interface to be called, and then get an access to this interface. In order to 
access the interface a binding must be established to this interface. Each interface has a name, in 
order to distinguish it from the other interfaces of the component.  One may distinguish two kinds 
of  interfaces:  a  client (or  required)  interface  emits  operation  invocations,  while  a  server (or 
provided) interface receives them.

4.2.1.2 Internal component structure
At  the  next  level  of  control  capability, 

beyond  the  "introspection"  level  where 
components  provide  interfaces  to  introspect 
their  external  features,  a  Fractal  component 
can  provide  control  interfaces  to  introspect 
and  reconfigure  its  internal features. 
Internally, a Fractal component is formed out 
of  two  parts:  a  controller (also  called 
membrane), and a content (see Figure 16). The 
content of a component is composed of other 
components,  called  sub  components,  which 
are under the control of the controller of the 
enclosing component. The Fractal model is thus recursive and allows components to be nested at an 
arbitrary  level.  A  component  that  exposes  its  content  is  called  a  composite component.  A 
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Figure 15: External view of a Fractal component.

Figure 16: Internal view of a Fractal component.



component that does not expose its  content,  but has at least one control interface is  called a 
primitive component. A component without any control interface is called a base component.

The controller of a component can have 
external and  internal interfaces.  External 
interfaces  are  accessible  from  outside  the 
component,  while  internal  interfaces  are 
accessible  only  from  the  component's  sub 
components.  A  functional interface  is  an 
interface that corresponds to a provided or 
required functionality of a component, while 
a  control interface is a  server interface that 
corresponds  to  a  "non  functional  aspect", 
such  as  introspection,  configuration  or 
reconfiguration, and so on.

A component may appear in the content 
of (be  shared by) several distinct enclosing 
components  (see  Figure  17).  A  component 

that is shared among two or more distinct components is subject to the control of their respective 
controllers.  The exact semantics of  the resulting configuration (e.g.  which control  behavior is 
enacted) is in general determined by an encompassing component that encloses all the relevant 
components in the configuration.

4.2.1.3 Reconfiguration
Reconfigurations can involve removing a component and replacing it with a new one, adding or 

removing  components.  All  these  operations  can  be  performed  dynamically  (i.e.  while  the 
application is executing). For example, let's say we want to dynamically change a component. In 
order to do this we need to unbind all  of its bindings (i.e.  client and server bindings).  These 
unbindings cannot occur unless the component and its parent composite-component are stopped. 
The new component that will replace this one must be created and added to the same composite 
component. The old component must be removed. The former bindings that had been undone must 
be redone with the new component. All stopped components must be restarted. The application can 
now run with the new component.

4.2.2 Julia, implementation of the Fractal Component Model
Julia [Julia] is the reference implementation of the Fractal component model. Julia is written in 

Java  and  is  fully  compliant  with  the  Fractal  Specification.  Julia  has  been  designed  to  be  a 
lightweight and efficient implementation of these specifications. The design choices which have 
been made aim at reducing the memory footprint and the runtime overhead of Fractal components 
developed  with  Julia.  Julia  is  a  highly  configurable  framework  which  allows  creating  many 
different  forms of  Fractal  components.  These  forms vary  depending on the  control  semantics 
associated to the component. Julia provides a set of predefined control semantics for frequently 
used components (e.g. primitive, composite) and allows developers to incorporate their own forms. 
These forms may redefine or customize any aspect  of  the control  semantics such as  lifecycle 
management, binding creation, naming policies or any other kind of technical service one may 
want to attach to a Fractal component. Julia uses the ASM [ASM] bytecode engineering library for 
constructing at runtime a Fractal component instance. ASM is used in many different situations: 

• to generate interceptor and Fractal interface instances, 
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• to perform optimizations such as merge strategies for reducing memory footprint

• to modularize the writing of control classes with a mixin algorithm which generates the 
bytecode of a class from several different layers developed independently. 

Since version 2.5, Julia provides the notion of a component-based control membrane. The idea is 
to define the control semantics of a Fractal component with the assembling of other so-called 
control components. These control component are themselves Fractal compliant (they implement 
the Fractal API) and their assembling is described with Fractal ADL. This feature is described in 
Section 9 of the Julia API documentation. 

4.2.3 FScript for Safe Dynamic Reconfigurations
The Fractal APIs provide dynamic discovery and reconfiguration operations, however, with 

certain drawbacks. The Fractal APIs are minimalist and orthogonal, causing code to be verbose and 
not very readable. Since Fractal introduces new concepts that are not implemented in the host 
language (e.g. components, bindings), and other concepts that are used differently (e.g. interfaces), 
developers may be confused. Furthermore, in the case of Fractal implemented in Java, Java is a 
general purpose language and does not provide guarantees when executing Fractal reconfiguration 
code. Such guarantees could be insuring that data structures are not corrupted, calling dangerous 
methods, or simply looping forever. To overcome these limitations and retain Fractal's advantages, 
a  new Domain Specific  Language has  been implemented,  namely FScript  [David,  2006].  The 
language is used for navigating inside Fractal architectures and dynamically reconfiguring them. 
FScript  uses  a  special  notation  called  FPath  [David,  2006] to  navigate  intuitively  inside  an 
architecture and select parts of it. FScript has been implemented as a simple interpreter, that can be 
embedded inside Fractal applications.

FPath  is  a  special  notation  used  inside  the  FScript  language  to  navigate inside  Fractal 
architectures and select elements in it according to some predicate. Its syntax and execution model 
are inspired by the XPath language which solves the same problem on XML documents (although 
FPath does not use XML). FPath sees a given Fractal architecture as an oriented graph with labeled 
arcs.  Different kinds of  nodes represent all  the architectural  elements reified:  the  components 
themselves,  component  interfaces (both  external  and  internal),  configuration  attributes 
corresponding to getter/setter methods, and finally  methods on the interfaces. These nodes are 
connected by labeled arcs, which denote the kind of relation between them. The following types of 
arcs, called axes are defined in FPath:

• component: from any kind of node to the component owning this node; 
• attribute: from a component node to all its configuration attributes; 
• interface: from a component node to all its interfaces, and from a method node to the 

interface of which it is part; 
• method: from an interface to all its methods; 
• binding: from an client interface node to the server interface it is bound to, if any; 
• child (resp. parent): from a component to its direct children (resp. parents); 
• sibling: from a component to all the other components which have at least one direct 

super-component in common with it; 
• descendant (resp. ancestor): from a component to all its direct and indirect children 

(resp. parents).  descendant (resp.  ancestor) is thus the transitive closure of child 
(resp. parent). 
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FPath expressions denote relative paths starting from an initial (set of) node(s) in the graph. 
Such  a  path  is  made  of  a  series  of  steps,  each  made  of  up  to  three  elements: 
axis::test[predicate] (the predicate is optional). On each step, an initial set of nodes is 
converted to a new set by following all the arcs with a label corresponding to the axis, then 
filtering the result using the test (on the node names) and optional predicates (boolean expressions 
applied to each candidate). For a multi-step path, this algorithm is repeated with the result of the 
previous step as the current node-set of the next. 

For example,  sibling::*/interface::*[provided(.)][not(bound(.))]  is  made 
of two steps. The first one uses the sibling axis, an "empty" test * (which is always true) and has 
no predicate. The second step uses the interface axis, no test either, and two predicates which 
are combined. Inside the predicates, the dot "." represents the current node on which the predicate 
is evaluated. Evaluating the complete expression starting from an initial component node will:

1. select all its sibling components, however they are named; 
2. select all the external interfaces of these siblings; 
3. filter this set of interfaces to return only server interfaces (provided()) which are not 
already bound. 

4.2.4 FScript Reconfigurations
The preceding section described the FPath notation which is used to navigate inside a Fractal 

architecture  and  select  parts  of  it,  but  cannot  modify  the  architecture.  The  complete  FScript 
language, of which FPath is just a part, enables the definition of reconfiguration actions to apply 
to a running application. FScript is a simple imperative/procedural language whose main features 
are:

• direct syntaxic support for navigation in Fractal architectures thanks to FPath; 
• safety guarantees on the application of the reconfigurations; 
• a very dynamic implementation which does not impose a compilation phase and can be 

easily  embedded into  existing  applications,  where reconfiguration  scripts  can  then be 
dynamically loaded and executed. 

FScript distinguishes two kinds of procedures: functions and actions. Functions are guaranteed 
to be side-effect free, and can only introspect an architecture, not modify it. They can be used 
safely inside FPath requests,  for example in the predicates.  Functions are defined like actions, 
expect  that they use the  function keyword instead of  action,  and can only invoke other 
functions, not actions (be they primitive or user defined). FScript provides a standard library of 
primitive functions and actions which gives the user access to all the information available from 
the Fractal API, and all the standard reconfigurations.

FScript's design and implementation guarantee the consistency of reconfigurations. Because 
these reconfigurations are applied to running applications, it must be guaranteed that they will not 
break the target system. To this end, they have chosen a set of consistency criterion, in particular 
transactional integrity (atomicity, consistency of the final state, isolation) and termination of the 
reconfigurations. The validation of these criteria is guaranteed in part by the language's structure 
itself, whose expressive power has been limited, and in part by the implementation.
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4.3 Application management infrastructure

Figure 18: Meta-application infrastructure
The infrastructure  shows the separation of  the  phases  required  for  implementing  the  meta-application 
infrastructure. It is composed of the Trace manager, the Request Tracker and the Callback Manager. All 
events pass through the Meta-application Administrator, which performs associations between tracers and 
callbacks, filters unwanted events, and passes events though the system.

We present our meta-application infrastructure (see  Figure 18). It has been created using the 
Fractal  component  model.  It  instruments  the  application  and  provides  meta-application  and 
profiling functionality for Fractal component applications. The architecture is divided into three 
basic parts. The first part is the Trace Manager, which creates and inserts dynamic tracers into 
applications.  The second part  is  the  Request Tracker,  that  analyzes events  provided from 
application instrumentation. The third part is the  Callback Manager,  which implements the 
meta-application functionality specified by the user. These three parts will be presented in detail.
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4.3.1 Trace Manager
The  Trace Manager performs  dynamic  application  instrumentation.  The  application  is 

instrumented using dynamic tracers and the asynchronous event annotation toolkit. The  Trace 
Manager handles  only  dynamic  tracers.  It  is  composed  of  several  components,  a  Trace 
Administrator, a Trace Logger, a Trace Creator and a Trace Pool. The Trace 
Administrator correlates the different components and instruments the application. The Trace 
Manager receives a reference to the component to be instrumented. Using FScript, the  Trace 
Manager performs a search for all bindings in the application. For every binding in the application 
a unique and compatible tracer must be created. The  Trace Creator is used for this purpose. 
Each tracer must implement a server and a client interface compatible with the binding to be 
instrumented, in addition to a synchronous event logging interface used for notifying the meta-
application that a call is being performed. Since Fractal applications can be modified dynamically, 
there is no way of knowing what interfaces need to be implemented before runtime. Creating 
dynamic components with unknown interfaces can be performed in two different ways: using a 
bytecode editor [ASM] to create the component, or using Java Reflection and specifically Dynamic 
Proxies to imitate a components behavior. We have chosen the second solution because it is a 
quicker solution to implement, although Java Reflection generates more overhead and there are 
more  limitations  than  the  bytecode  editor  solution.  Tracers  are  a  generic  component  that  is 
partially created before runtime, and partially created using the Dynamic Proxy API [JavaProxy]. 
More specifically, a generic tracer exists before execution time, and it is wrapped in a component 
wrapper with the necessary client and server interfaces implemented.  After the tracer is created, 
the components involved are temporarily halted, the binding in the application is unbound, the 
tracer component is added to the composite component, the client interface in the application is 
bound to the dynamic server interface of the tracer, and the client interface of the tracer is bound to 
the server interface of the application. All calls through that binding are now intercepted by the 
tracer.  All  bindings  in  the  application  are  instrumented  in  the  same  fashion  and  all  inter-
component activity is now visible to the meta-application infrastructure.

When  a  call  is  intercepted  by  a  dynamic  tracer,  the  tracer  notifies  the  Trace 
Administrator. The Trace Administrator uses the Trace Logger for recording the event 
so it can be later analyzed if necessary. Then the  Trace Administrator notifies the  Meta-
application Administrator of the event. Specifically, the information sent provides details 
about the tracer that has intercepted the call, the thread ID of the halted thread, and the event that 
has occurred (i.e., pre, post or error). The Trace Administrator is then in charge of the event 
and will be explained later.

4.3.2 Request Tracker
The  Request Tracker receives  and  analyzes  synchronous  and  asynchronous  execution 

events in the application, records the execution path of the requests, and also performs context 
related operations. The Request Manager handles the analysis of the event and indicates what to 
do to the Request Recorder and the Context Handler. In the case of synchronous events, the 
handler analyzes the thread ID in question and the nature of the event. If it is a call (i.e. pre), the 
Request Recorder is notified to add a new component to the thread execution path in question. 
If it is a return (i.e. post) of an open call, the Request Recorder is notified and the call is closed. 
If  all calls of the thread execution path are closed, then the thread has finished servicing that 
request. If all threads have finished servicing the request and no messages or other entities related 
to the request are waiting for service, then the request has finished. If the event is an error event, 
then the call is closed and the same analysis as before regarding termination of the request is 
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performed. Because threads  are entities servicing a request and the thread execution path is 
already related to the request execution path,  adding calls to a thread execution path implies 
adding it to the request execution path itself.

Asynchronous  events  are  treated  differently  because  asynchronous  links  must  be  created 
between thread execution paths and the Context Handler must modify contexts according to the 
event. If a thread is created or called from a pool, then the called thread is now dependent of the 
caller thread. This forks the request execution path. The Request Recorder is notified and the 
open  call  from the  caller  thread execution  path  has  an  asynchronous  link  added to  it.  This 
asynchronous link records the details of the event, including the time the event occurs, and it 
points to the thread execution path of the dependent thread. The two threads continue execution 
and their events continue to be analyzed. The  Context Handler must be notified when this 
occurs because it associates the called thread to the request contexts of the caller thread, and 
it duplicates the message context of the caller thread and associates the duplicated version of 
the message context to the called thread. If the event is a message sent, then the open call 
of the thread execution path performing the write is added an asynchronous event link. The link is 
left open, and will be closed when the message is read or received. The  Context Handler is 
notified and the request contexts of the writing thread are associated to the message, and the 
message context of the writing thread is duplicated and associated to the message. If the event 
is a message received, the Request Recorder is notified and the open asynchronous link is closed, 
with a link to a newly created thread execution path representing the execution path of the thread 
that has read the message. The thread is now associated to the request contexts of the message and 
the message context of the message. If the thread already had contexts associated to itself, then the 
contexts are added (see 3.5.5 Handling multiple contexts). The message and the associated contexts 
are removed from the  Context Handler and the  Request Recorder. If the event was a  message 
read, the same actions as for message received are performed, except the message and the contexts 
are not removed from the Context Handler or the Request Recorder because the message can be 
read by another thread at a later time.

When requests finish, they notify an application using the Request Consumer Interface. They 
send the full request execution history, including request statistics (e.g., per component latencies, 
request latency, amount of thread execution paths), to the consumer of the event. This provides a 
means for performing workload analysis and application profiling.

4.3.3 Callback Manager
The  Callback Manager is  used  for  implementing  the  meta-application  functionality 

described by the user. For a  Callback to be used two elements are required, the interception 
points in the application and the callback functionality. The interception points are controlled by 
the Trace Administrator. The Callback Manager has no direct knowledge of them. The 
Callback Creator creates  the  Callback component  by  receiving  a  Java  object  that 
implements the Callback Interface. The Callback Interface consists of three methods, a 
pre, a post and an error. These methods correspond to the events that a tracer produces. The 
Callback component is created using the functionality described in the Java object provided by 
the user. It is then added to the Callback Pool and assigned an ID. This ID is returned when the 
component  is  created  and  is  later  used  by  the  Meta­application Administrator to 
associate Callbacks to Tracers. These associations are hidden from the Callback Manager.

When a  tracer  notifies  that  a  synchronous communication event  has  occurred,  the  Meta-
application Administrator decides which Callbacks need to be executed. It send the IDs 
of  the  Callbacks.  The  ID  of  the  Callback is  used  to  identify  it.  The  Callback 
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Administrator receives the petition, it logs the petition using the Callback Logger, and it 
executes  the  required  Callback.  The  Callback can  access  request contexts and  the 
message context associated to the thread that was halted by the dynamic tracer. It cannot 
access other contexts in the application. A  Context Access Interface is required by each 
Callback and is provided by the Context Handler. A Callback performs the tasks assigned 
by the user and has full access to context modification or consultation. When finished, the call is 
closed and control returns. The tracer then permits the thread to continue execution.

4.3.4 Meta­application Administrator
The  Meta­application   Administrator proxies  calls  between  the  different  sub-

components of the meta-application, and between sub-components and the exterior. It is used to 
isolate cross-component functionality, like interception point – callback associations. This helps 
make the the Trace Manager, Request Tracker and Callback Manager less dependent on 
each other.

The Meta­application Administrator receives the request to instrument an application. 
It notifies the  Trace Manager,  which then inserts dynamic tracers in the application. For full 
application instrumentation the asynchronous event annotations must also be inserted.  At the 
moment the annotations are not dynamic, and the application is compiled with them. A future 
edition  of  the  infrastructure  may include  an  Annotation Manager that,  using  a  bytecode 
manipulation  toolkit  [ASM] it  records  the  placement  of  the  annotations  and  removes  the 
annotations from the application either at compile-time or at load-time. When instrumenting the 
application, the annotations may be reinserted into the application at runtime using Java code hot-
swapping technologies  [JVMTI]. This solution is feasible but requires time to implement. At the 
moment the  Meta­application Administrator receives the asynchronous events directly. 
The  Administrator also receives requests for meta-application creation. For each  Callback 
component in the application, an FPath query and a Java object containing the code for the meta-
application at the specific points specified by the FPath query.  The Java object is  sent to the 
Callback Manager and  the  Callback is  created.  The  FPath  query  may contain  a  single 
interface,  or  a  set  of  interfaces  to  be  instrumented.  The  Meta­application administrator 
performs an analysis of the interfaces and locates the dynamic tracer already instrumenting each 
interface. For each dynamic tracer an association with the  Callback  specified by the user is 
made.  One  callback can be associated to many different  dynamic tracers (see  3.6 Callback
infrastructure).  After  the  application  is  fully  instrumented  and  the  meta-application  behavior 
instantiated,  the  meta-application  infrastructure  commences  receiving  calls  (events  may occur 
before all  instrumentation is  inserted or before all  callbacks are created). A dynamic tracer is 
activated and sends an event to the Meta­application Administrator when a call between 
two components occurs. The Administrator notifies the Request Tracker and then reads the 
list  of  Callbacks associated to the tracer and sends the ordered list of Callback IDs to the 
Callback Manager for execution. When asynchronous events occur, the  Administrator is 
notified directly. It passes the event to the Request Tracker who performs the necessary tasks. 
When  a  request  is  finished,  the  Request Tracker notifies  the  Administrator.  The 
Administrator contains a  list  of  request consumers that  are  interested  in  finished request 
information. The request is duplicated and an individual request execution path is sent to each 
consumer  through  the  Request Consumer Interface (messages  are  duplicated  because 
components cannot share them).
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4.3.5 Current state and remaining work
In this chapter we have presented our architecture for performing application management. 

Currently,  we have implemented the asynchronous event  annotation toolkit,  dynamic tracers, 
request tracking and callbacks. The annotation toolkits are not currently dynamic. They have been 
implemented as static method calls that are directly inserted into the application's code. We have 
implemented request tracking and context propagation, and they correctly interpret synchronous 
and asynchronous events. We have also implemented the callbacks. At the moment, we are in the 
phase  of  evaluating  the  architecture  and  its  feasibility.  For  these  evaluations  we  require  a 
component application that can be easily analyzed without our architecture, so we can compare the 
results with our expectations. We plan on using the Comanche Web-Server  [Comanche],  and 
extending its functionality, adding asynchronous events and creating different execution paths in 
the application. Once Comanche is modified, we can test the overhead from dynamic tracers, the 
annotation toolkit, context propagation, request tracking and callbacks (although callback overhead 
depends on user specified functionality). We also plan on constructing a profiling and workload 
analysis  to  prove  the  feasibility  and  usability  of  the  request consumer interface.  If 
successful, the interface would provide means for performing online application analysis based on 
common instrumentation, thus unifying application management and analysis. To conclude the 
initial evaluations of our project, we must provide a method of focusing on points of interest in the 
application and discriminating annotations.  In case overhead from the application is  too high, 
discrimination of events could provide a means of overcoming this limit.
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5 Conclusion

Summary of the Contribution
Modern applications are more and more complex. Tools for understanding applications are 

essential for management and analysis tasks. Currently these tools are lacking and have not kept 
pace with tools for developing the applications. Performance problems are hard to diagnose and 
constructing accurate models of a system's workload is difficult. Furthermore, software components 
intertwine their functional concerns (e.g., their specific job) with their non-functional concerns 
(e.g., priority, QoS, security), limiting the reusability of the software components themselves. We 
propose unifying application analysis and application management to provide a coherent view of 
what currently are disjoint concepts. A solution that unifies application analysis and application 
management must be fine-grained, dynamic and produce low-overhead. We have provided such a 
unification by means of a generic fine-grained instrumentation infrastructure. We have defined a 
common base-granularity  that  is  beneficial  for  both,  application  management  and application 
analysis. We propose requests as the granularity for analysis and management.

Based on the request-granularity, we have presented the necessary techniques and information 
for  automated request tracking,  context propagation and  meta-application functionality.  We 
present dynamic instrumentation in component-based applications by means of dynamic tracers. 
We give a thorough analysis  of  asynchronous communication events that  exist  in  component 
applications and how to follow causal information paths through the application. We have paid 
special attention to correctly interpreting causal pathways in the application, and to providing 
dynamic instrumentation and interception points.  We also have proposed two novel  forms of 
contexts,  namely  message contexts and  request contexts.  The  solution  provides  unified  fine-
grained instrumentation for both, application analysis and for application management.

Our solution is applicable to all  component models that support introspection and dynamic 
reconfigurations.  Our  meta-application  infrastructure  provides  fine-grain  interaction  points  on 
every  component  interface,  it  is  run-time dynamic,  and it  produces  zero  overhead when not 
enabled. Complementary to existing techniques in application analysis, like performance analysis 
or application profiling, we provide a request consumer interface, that can easily feed request 
execution paths into external application analysis tools. Our application management infrastructure 
has  been  implemented  using  the  Fractal  Component  Model.  Specifically,  we  have  used  the 
reference implementation of Fractal, Julia.
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Future work
Due to lack of time, the quantitative evaluation (i.e., overhead measurements) remains to be 

done on realistic applications. We intend to fully quantify and minimize the overhead produced by 
our  application.  If  overhead  is  low  enough  the  solution  should  be  feasible  for  production 
environments.  We plan  on  extending  the  functionality  of  our  infrastructure  to  interact  with 
multiple  component applications simultaneously,  and on analyzing how to  propagate contexts 
across  multiple  applications  and  across  networks.  Some  existing  solutions  provide  grouping 
metadata into TCP/IP packets for network transmission, but this limits the amount of metadata that 
can be sent.

We also plan to use a domain specific language (DSL) to improve user interaction with the 
application.  This  language  must  be  capable  of  controlling  dynamic  tracer  insertion  and  the 
granularity of the analysis, providing analysis in specific points of interest. It must select which 
annotations are to be analyzed and which dynamic tracers to be deployed, thus avoiding the cost 
and overhead of analyzing non desirable annotations and portions of the application. Also, the 
language  must  be  capable  of  specifying  callback  interaction  points  and  of  defining  callback 
functionality,  fully extracting the meta-application behavior from the application under study. 
Extra  benefits  to  the  language  could  be  guaranteeing  safe  execution,  by  using  a  bytecode 
interpreter.
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