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ABSTRACT 

Real-time features and software runtime adaptation are two 

requirements of modern software. On the one hand, the most 

important characteristics in real-time applications are their 

predictable behavior and deterministic execution time. On the 

other hand, runtime adaptive software are capable of being 

updated and reconfigured at execution time, making them more 

flexible and available. The OSGi Service Platform has become the 

de facto platform for developing flexible and modular software, 

due to its simple service-oriented component model. Many Java 

applications are being migrated to and developed for the OSGi 

Platform's component model. However, due to the popularization 

of real-time solutions such as the Real-Time Specification for 

Java, some of these applications may have timing constraints 

which cannot be respected because of the platform's dynamic 

behavior and the fact that service-oriented component-based 

application architectures may change at execution time. This 

paper proposes to delay reconfigurations for after critical 

processing, according to Service Level Agreements established 

between service providers and consumers. Our approach has been 

implemented as an extension to the iPOJO component model 

which freezes application's architecture and avoids introducing 

unpredictability caused by runtime adaptation during real-time 

applications' execution.   

Categories and Subject Descriptors 

D.4.7 [Organization and Design]: Real-time Systems and 

Embedded Systems; C.1.3 [Other Architecture Styles]: 

Adaptable Architectures. 

General Terms 

Design, Measurement. 

Keywords 

Real-time; Service-Oriented Architectures; Real-time 

Specification for Java (RTSJ); OSGi Platform; Dynamic Software 

Adaptation; Mode Change. 

1. INTRODUCTION 
Dynamic adaptive behavior and real-time requirements are 

common needs of today's software. While the former primes for 

flexibility and unforeseen modifications in the environment at 

runtime, the latter concerns predictability and determinism of 

applications' response times. Many solutions for dealing with both 

aspects separately have been fairly recently developed for the Java 

platform. One of the most adopted real-time solutions for Java is 

the Real-Time Specification for Java (RTSJ) [1] and its 

implementations. At the same time, the popularization of 

component-based design and service-oriented computing concepts 

[20] for the development of flexible and modular applications in 

Java are responsible for the specification of service platforms. 

One of the most popular service platforms is the OSGi Service 

Platform [27]. Its original intention was to become an open 

specification to develop and deploy services in home gateways, 

but it has become the de facto standard for developing general-

purpose Java applications in a modular and flexible way. Its 

popularization in several domains is due to, among many other 

things, its adoption by the Eclipse Foundation for developing 

plug-ins for their IDE. The development paradigm of the OSGi 

framework is both service-oriented and component-based. This 

specification, that in former days addressed embedded systems, 

was extended to cover many other domains, such as mobile 

phones, industrial supervision, automobiles and more recently a 

whole set of Java Enterprise Edition application servers. 

In general, runtime adaptive software and real-time software are 

disjoint sets due to the conflict between predictability and 

flexibility. However, two factors motivate us to find solutions to 

the growing number of systems which may be in the intersection 

of both application classes: First, the fact that even critical real-

time software, which cannot have its execution interrupted, must 

be updated due to environment changes or maintenance; and 

secondly, the increasing popularity of service-oriented and 

component-based approaches to achieve runtime adaptation, 

which is leading industries and developers to migrate their 

applications to service and component frameworks. An example is 

the inclusion of the OSGi framework in the core of several 

application servers, such as JOnAS [8] and Oracle's (formerly 

BEA's) WebLogic Real-Time. 

In this paper we identify the issues raised by the dynamic 

modification of service-oriented architectures in Real-time Java 

applications and suggest approaches to avoid the introduction of 

unpredictability in real-time software hosted on the OSGi 

Platform. We propose two approaches to tackle those issues: 
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1. an architecture freezing strategy, which blocks the 

application's architecture during real-time execution 

periods and delay reconfigurations after them; 

2. and an SLA-based monitoring system that controls the 

reconfigurations performed at non-critical execution 

periods. 

We have implemented and validated one of our propositions on 

Apache Felix, an open source OSGi platform.  

This paper is organized as follows. Section 2 presents an overview 

of Real-time for Java. Section 3 discusses about OSGi and real-

time applications. The architectural freezing approach and a real-

time extension for an SLA model are presented in the Sections 4. 

Section 5 presents an implementation for the approach and the 

experimentation performed to validate it. Finally, Section 6 

concludes the paper and presents our perspectives. 

2. REAL-TIME JAVA 
Real-time systems differ from other information systems in the 

fact that their correctness depends on both functional and 

temporal aspects [25]. Timing correctness requirements come 

from the impact of a real-time system upon the real world. These 

requirements, in turn, may be expressed in the form of timing 

constraints for the set of cooperating tasks which compose the 

system [14]. Those timing constraints, also known as deadlines, 

can be relative to an event or absolute, precising a point in time 

for a task to complete its execution. Real-time systems do not 

necessarily have to be fast, but they must present two properties: 

they must be predictable, that is, it is possible to mathematically 

demonstrate, at design time, that all timing constraints will be 

met; and they must be deterministic, which means that the system 

has the ability of ensuring the execution of an application despite 

external factors that can introduce unpredictability. Schedulability 

analysis and formal verification are two techniques commonly 

used in order to verify the predictability of a system. The 

determinism of an application can be measured through its latency 

(time between an event and the system's response to that event) 

and its jitter (distribution and standard deviation of latency 

responses) [3]. 

In order to develop real-time applications, the entire underlying 

infrastructure must be real-time. This motivated the creation of 

real-time scheduling algorithms, operating systems and 

programming languages. In the context of the Java platform, an 

extension to standard API, as well as new rules for the Java 

execution environment, were defined in order to allow the 

development of real-time systems with the Java programming 

language. This extension was developed under the name Real-

Time Specification for Java (RTSJ) in 2000, by members of 

companies such as Sun and IBM. The two main areas identified as 

requiring enhancements were: 

 Thread Scheduling and Dispatching: RTSJ introduces 

the concept of schedulable objects (real-time threads, 

asynchronous event handlers and their subclasses), 

objects which the base scheduler manages. The RTSJ's 

base scheduler is priority-based, preemptive, with at 

least 28 unique priorities with higher execution 

eligibility than standard Java thread priorities, uses run-

to-block scheduling1, and can perform feasibility 

analysis for a schedule. Schedulable objects have 

parameter classes bound to them, representing resource-

demand (scheduling, memory or release) characteristics; 

 Memory Management: RTSJ supports memory 

management that avoids interfering with the 

deterministic behavior of real-time code. It allows the 

allocation of short and long-lived objects in memory 

areas that are not garbage collected. 

Besides these areas, RTSJ also propose enhancements in the 

mechanisms for synchronization and sharing, asynchronous event 

handling, asynchronous transfer of control, asynchronous thread 

termination and physical memory access. 

As we have seen in this section, real-time software requires 

reliability and predictability. However, many current and future 

real-time applications are dynamic, that is, external conditions 

may require modifications and adaptations at runtime. In the next 

sections, we discuss about dynamic software adaptation, the OSGi 

service platform, which allows for dynamic reconfiguration, and 

how real-time software may benefit from their approach. 

3. MOTIVATIONS FOR A REAL-TIME 

AWARE OSGI PLATFORM 

3.1 Dynamic Adaptation of Real-Time Software 
The first works about the importance of structuring software 

systems were originally led by Dijkstra [9], in the late 1960s. 

These were the basis for a software engineering discipline called 

Software Architecture. Software architecture studies ways of 

structuring software systems, by representing its software 

components, their interconnections and the rules concerning their 

design and evolution over time [11]. Structuring systems as 

interacting components is the result of years of research in 

software engineering and one of the solutions proposed in order to 

deal with scalability, evolution and complexity issues in software. 

Dynamic software architectures are architectures in which the 

composition of interacting components changes during the 

system's execution. Advances in this field have been boosted by 

the emergence of ubiquitous computing [31] and the growing 

demand for autonomic computing [16]. The main motivation for 

runtime adaptive software is to avoid the risks, costs and 

inconveniences presented by the downtime of software-intensive 

systems because of environment changes [19]. An example is 

dynamic software update, in which the application is able to 

update itself to fix bugs and add new features without requiring a 

stop and a restart. Nonstop and critical systems, such as air-traffic 

control systems, enterprise and financial applications, which must 

provide continuous service, are examples of applications in which 

dynamic update is required [18]. However, this flexibility has a 

cost: safety. Although we can perform modifications which were 

not planned during the design phase, we cannot anticipate the 

effects of a dynamic modification. 

Several techniques have been developed to enable dynamic 

adaptive behavior in applications: 

 Component-Based Design: Software components are 

independent software units, which are composed in 

order to build a complete system, with contractually 

                                                                 

1 It means that a schedulable object in execution will continue 

running until it either finishes its execution or is preempted by a 

higher-priority schedulable object. 
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specified interfaces and explicit context dependencies. 

Dynamic adaptation can be performed using late 

binding mechanisms, which allows coupling 

components at runtime through well-defined interfaces 

[26]. The foundation of a component-based 

methodology lies on its software component model, 

which defines what components are, how they can be 

constructed, assembled, deployed, etc. 

 Architecture Description Languages: ADLs are 

languages used to describe software architectures. 

Common elements of ADLs are components, 

connections and configurations. ADLs may be used to 

specify points of variability in the architecture at 

runtime. For instance, Fractal [2] is a component model 

which contains an ADL. The architecture description of 

an application can be queried by means of an X-Path-

based language called F-Path and reconfigurations can 

be performed through a DSL called FScript [7]. 

 Dynamic Service-Oriented Architectures: Service-

Oriented Architecture (SOA) is an architectural style 

and a programming model based on the service concept 

[20]. A service is a software unit whose functionalities 

and properties are declaratively described in a service 

descriptor. Services can be composed and orchestrated 

to create more complex services. Service providers 

register the description of their services in a service 

register. Service consumers query the service register to 

discover and select services. Then, after negotiating and 

agreeing to service usage terms, the service consumer is 

bound to the service provider. Dynamic SOA [4] is an 

extension to the SOA model, which considers that 

services may appear, disappear or modify their contract 

at runtime. 

Real-time adaptive systems may be used to implement real-time 

systems which need flexibility, adaptive systems whose 

interactions with other software entities must meet real-time 

requirements, or systems which present both characteristics. 

Several works in the literature present approaches for dealing with 

the dynamic reconfiguration of real-time applications. Among 

these approaches, we find the use of mode change protocols [21]. 

An operating mode is characterized by a goal and a set of 

functionalities, which in turn are provided by different sets of 

tasks. Changes in the application state may request a mode 

change, transitioning the system from one operating mode to 

another. During the transition, the set of tasks may include both 

old- and new- mode tasks. In this approach, it is crucial to assure 

that the overload produced by the transition will not interfere on 

the system's predictability and cause any deadline to be missed. 

Other approaches for the development of real-time adaptive 

systems include real-time extensions to object request brokers 

[30][6] and the componentization of objects representing quality 

of service attributes [24]. 

3.2 The OSGi Service Platform 
The OSGi Service Platform is a service platform which addresses 

the lack of support for modularity in Java applications [13] and 

applies SOA principles to the design of Java applications. The 

OSGi specification defines a way to create modules (bundles, in 

OSGi terminology) and to make them interact at runtime. Bundles 

are actually Jar files with meta-data specifying their symbolic 

name, version and dependencies. The central idea of OSGi 

modularization is that each bundle has its own class-loader, and 

consequently, its own class path. In order to allow interactions 

among bundles, OSGi uses a mechanism of explicit package 

imports and exports. In addition, the OSGi platform allows 

bundles to be dynamically installed, updated and uninstalled, 

without requiring the platform to stop and restart. Besides the 

deployment mechanisms, the specification defines a non-

distributed service platform for Java, which allows services to be 

dynamically published and consumed in a single process or 

memory space. OSGi services do not introduce overhead when 

being invoked thanks to direct references. They are also known as 

micro services (µServices) [17] or light-weight services in 

opposition of well-known and heavy-weight Web Services. 

The OSGi Service Platform has been a widely adopted technology 

for home automation, pervasive environments and enterprise 

contexts, due to its dynamic service component model, flexible 

remote management and its continuous deployment support. 

However, it lacks support for real-time applications, which 

restricts its application to environments where real-time 

requirements do not have to be guaranteed. Indeed, the 

continuous deployment support allows bundles to be installed, 

started, stopped and uninstalled at anytime, thus the static system 

configuration assumption is no longer valid, because the system 

will evolve during the application's life-cycle. 

3.3 Challenges 
When we consider the execution of real-time applications in the 

OSGi Service Platform, several potential issues must be taken into 

account. The most evident of them is that the OSGi Service 

Platform was not conceived as a real-time application. So far, all 

of its implementations were written in standard Java and its 

classes will need to interact with real-time components, possibly 

written in the RTSJ or another real-time Java technology. 

Considering RTSJ specifically, this may lead to problems such as: 

 Memory leaks: In the RTSJ, class objects and static 

objects are stored automatically in the immortal memory 

area, which is never garbage-collected. Consequently, 

this may complicate uninstalling components and class 

unloading. 

 Starvation: The OSGi framework is based on standard 

Java. Consequently, it uses ordinary Java threads. RTSJ 

components have real-time priorities, which are higher 

than the ordinary ones. Thus, due to the fact that RTSJ's 

scheduler uses a run-to-block scheduling policy, real-

time component threads may lockout system threads and 

keep the administrator from issuing commands to the 

framework. 

In this study we will focus mainly on ways to deal with real-time 

constraints in the OSGi service platform, where dynamic 

adaptability is a required property. An example of an application 

with soft real-time requirements which requires dynamic 

adaptations to its architecture is a digital security camera monitor 

system (see Figure 1). In this application, the intrusion detection 

system is connected to several security cameras which provide 

either a still image frame or motion frame service, or both. The 

number of security cameras connected to the intrusion detection 

system is unknown at design time. At runtime, once a camera 

component is installed, thanks to the system's Plug-and-Play 

deployer, it is automatically connected to the intrusion detection 

module, which will process frames in order to detect human 

presence. Indeed, cameras in this system have the dynamic 

1117



availability property, being able to appear and disappear at any 

time, in order to facilitate installation and maintenance and 

provide fault-tolerance to device and network failures. For 

instance, if we assume that frames are sent regularly to the motion 

detection module, image processing time must be bounded in 

order to allow the system to react as soon as possible to a human 

presence. Four points must be observed concerning the impact of 

dynamic availability in the architecture of the real-time system: 

 Binding to a new camera component: The system's 

underlying mechanisms which perform the binding 

between components may add an unpredictable delay in 

the image processing time. Moreover, depending on the 

number of cameras to which the intrusion detection 

system is connected, processing time may become 

longer than the time attributed to the execution of the 

intrusion detection system. 

 Removal of a camera component: In the same way as 

binding mechanisms, unbinding mechanisms may 

introduce an unpredictable delay in image processing 

time. Furthermore, we must ensure that the removed 

camera component is not currently being used by the 

intrusion detection system. 

 Update/reconfiguration of a camera component: 

Updating a camera component in the OSGi platform 

makes the component stop and return to the Installed 

state. Component dependences are then resolved and 

afterwards the component is restarted. The duration of 

this process cannot be predicted. In addition, the new 

camera component may have different properties. 

Thereby, a feasibility analysis which may have been 

performed before is no longer valid and therefore must 

be redone. 

 Binding a camera component to another component: 

Another factor that must be considered is the case where 

the camera component provides the image frame service 

to more than one consumer. Sending the frame to one of 

the components while the other waits may introduce an 

unpredictable wait time for the former component. 

 

 
Figure 1. Video monitoring application 

 

To summarize, besides the real-time issues inherent to the Java 

Platform, the OSGi Service Platform presents several other 

shortcomings which make it inappropriate for deploying and 

developing real-time applications. These shortcomings may have 

two different reasons. The first one is the fact that the OSGi 

platform was not conceived for being used in the context of real-

time applications. The other one comes from the dynamism 

provided with its service-oriented component model. Indeed, 

component dynamic availability features allow components to 

appear and disappear unexpectedly at runtime. In this study, we 

will focus on the dynamism aspect. 

4. PROPOSITIONS 
We propose an architecture freezing policy when the platform is 

in a real-time processing state, holding all reconfigurations until 

the end of execution of the critical code. Then, modifications may 

be performed if they respect an agreement established between the 

service consumer and the service provider. 

4.1 Architectural Freezing 
We consider that in a real-time application every component is 

able to perform its tasks within the real-time requirements of the 

application. Thus, the issues we are interested in lie in the 

bindings between components and how they change over time. 

Suppose that an application is represented by a set of states. Each 

state corresponds to a given architecture of the application2, and 

transitions between states correspond to the arrival, the departure 

or the update of a component in the application during runtime. In 

consequence, in order to respect the application timing 

constraints, just as in a mode change protocol, we must define 

rules for the transitions between states. 

We have included a new mode to the OSGi Platform, called 

"Real-time Mode". As shown in the Figure 2, contrarily to the 

non-real-time mode, once the system enters the real-time mode, 

no modifications are performed until it returns to the 

corresponding non-real-time state, in order to ensure that real-

time requirements will be met. The mode change is explicitly 

requested by the bundles before starting to execute a critical piece 

of code. After the real-time processing, the bundle itself 

communicates the platform that its critical code period has 

finished. Many bundles may request the mode change at the same 

time. Once the system has entered the real-time mode, it only 

switches back to the non-real-time mode when no bundle is 

executing critical code. 

 

 
Figure 2. OSGi Platform state diagram with the inclusion of a 

real-time mode. 

                                                                 

2 By architecture we mean a set of bundles and the 

interconnections among them. Consequently, a bundle update 

leads the application to a new state, even if the system 

configuration seems to be the same. 
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Figure 3 shows the bundle life-cycle for bundles on both non-real-

time and real-time modes. Bundles cannot be started or stopped in 

the real-time mode, so we removed the arrows which represent 

this transition. Consequently, the life-cycle becomes a graph with 

two separated components: Bundles which are resolved but not 

started cannot be started during a real-time mode, which is 

represented by the Installed, Resolved and Uninstalled states; 

Active bundles cannot be stopped and remain in the Active state 

during the real-time mode. We call this approach architecture 

freezing, due to the fact that the system holds all the architecture 

changes until the system quits the critical code period. This 

solution addresses mainly systems whose majority of the code is 

non-real-time but with some critical pieces of code which are 

executed periodically. 

 

 
Figure 3. Bundle life-cycle diagram for bundles in both 

standard (on the left) and real-time (on the right) modes. 

 

This approach is based on mode change, as we added a real-time 

mode for the OSGi platform and defined rules for the transitions 

to and from this mode. However, mode change protocols are 

focused on tasks, while the OSGi platform handles bundles, which 

may contain and execute multiple tasks simultaneously. 

Nevertheless, avoiding components to be started, stopped or 

updated during real-time processing is far from being enough. We 

must ensure that the modifications that will be carried out at the 

non-real-time mode will not affect the predictability of the real-

time components hosted by the platform. Therefore, we suggest in 

the next section a SLA-based mechanism in which architecture 

modifications may be performed if they respect an agreement 

established between the service consumer and the service 

provider. 

4.2 Real-Time Dynamic Service Level Agreement 
Service Level Agreement (SLA) [29] is a negotiated part of the 

contract established between the service provider and the service 

consumer which formally defines the level of service and the 

penalties applied when commitments are not met by either party. 

These commitments are specified in order to reach a given quality 

of service. A SLA contains information such as the parts engaged 

in the agreement, the service provided, service utilization time, 

service availability, service reliability, service utilization price and 

dates for renegotiating the agreement. SLAs are monitored by 

Service Level Management (SLM) modules, which are also 

responsible for applying the penalty policies in case of non 

commitment of the agreement. In order to avoid equity issues, a 

third party (the service certifier), chosen by the service provider 

and consumer, takes measures periodically in order to verify that 

the contract clauses are not violated. 

In this work, we have extended the Dynamic SLA model proposed 

by [28]. This DSLA model handles dynamic availability and 

service disruption, by adding meta-data which will be used by the 

monitor module for accepting new components and handling real-

time constraints. Our SLA model is depicted on the Figure 4 (for 

the sake of clarity, model restrictions are not represented). 

 
Figure 4. Our real-time SLA model. 

 

The model contain two main entities: Component and Platform. 

Components explicitly declare its required and provided services 

in a meta-data file, alongside of a description of its timing 

constraints (represented by the class RealTimeExecution), when 

necessary. Provided and required services, and timing constraints 

are considered as contracts, which must be monitored by a Real-

time Service Level Manager (SLM). Contracts are composed by 

an interface and a list of resources, whose role depend on the type 

of contract: for provided services and timing constraints, it means 

the resources required by the service provider or real-time 

component to execute; for service consumers, it acts as a filter, 

that is, only services which use less or equal the given quantity of 

resource can be selected. Service consumers also declare a policy, 

which must be applied in case of contract violation. 

A Platform is formed by a list of profiles, but only one profile at 

a time can be active. In turn, a platform profile has a period time 

(during which it must schedule all the executing components), a 

list of resources available to the components it executes and a list 

of policies to be applied in case of contract violation. The 

resources declared by the components on its contracts must 

obviously be a subset of the resources declared by the platform. 

5. IMPLEMENTATION AND VALIDATION 
We have implemented both approaches by means of an extension 

to the iPOJO component model [10], which intercepts 

modifications in the application's life-cycle. Components which 

execute critical code are connected to a Real-time Manager, 

whereby they can request a real-time mode change and notify the 

platform when its real-time processing is over. Our iPOJO 
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extension is also connected to this manager, and queries whether 

the system is in a real-time mode or not before the execution of a 

modification; in a positive case, the object which performed the 

query is blocked. Once there is no component executing a critical 

code, a notification is sent to the manager, that unblocks all the 

blocked object. This notification module was developed by means 

of RTSJ's asynchronous events and event handlers. 

When the system is at non-real-time mode, our Real-time 

Manager iPOJO extension performs several verifications 

accordingly to the currently established SLAs, before allowing the 

modification: 

 In case of a component addition, it verifies whether this 

component contains a real-time execution profile, with 

timing constraints; if so, it will only start the component 

if component's worst case execution time (WCET) plus 

the sum of the WCET of its required services fits on the 

active platform's period time and if all the required 

resources can be reserved; 

 In case of a component removal, it updates the 

platform's current profile, by releasing the occupied 

resources and updating the remaining period time; 

additionally, it performs the same action for all 

components which depends on the given component 

and cannot be bound to any other service provider. For 

those whose provider can be substituted, it updates the 

platform's profile with the new data. 

 In case of a component update, as the platform stops the 

currently used component and starts the updated one, 

the previously described actions are taken. 

In order to evaluate the determinism of our solution, we adapted 

the benchmark provided with Oracle/Sun's Java Real-time System 

2.2 to the OSGi Platform and to the iPOJO component model, as 

shown at Figure 5. Tests were performed on an architecture 

composed by an Intel Core i5 2.4 GHz processor and a 4 GB 

RAM memory, running the version 2.6.31 of the RT Linux Kernel 

for Ubuntu 11.04. The benchmark consists of a client which 

performs a given number of calls towards a class which performs 

CPU-intensive work and measure the jitter and standard deviation 

of the set of execution times3. 

 

 
Figure 5. Benchmark application architecture. 

                                                                 

3 We are currently working on a service-oriented adaptation of the 

CDx benchmark [15], which is used to evaluate Real-time Java 

virtual machines through a collision detection application. 

The service provider, in turn, was modified to start and stop 

stochastically according to a given probability. Figures 6 and 7 

show the jitter and mean execution type respectively obtained for 

different values of the probability parameter (in figure 7, the red 

error bar represents the standard deviation for the mean of the 

execution time with the real-time manager, as the blue error bar is 

referent to the execution time without the manager). For this 

benchmark, the client executes 1000 calls to the FibonacciService. 

The Fibonacci Implementation calculates recursively the 40th term 

of the Fibonacci series and returns its value. This way, we 

simulate a service which unpredictably appears and disappears 

(this may also be considered as an update), but whose availability 

is controlled by means of software (e.g. we do not consider 

services attached to physical devices which may be powered off 

and disconnected from the network, as there is no way to avoid 

this type of service disruption through software). For the moment, 

we assume that components do not have a malicious behavior, and 

will not block the whole platform in a real-time state. However, 

this case can be easily covered by implementing a timeout 

mechanism. 

 

 
Figure 6. Jitter for a 0%, 25%, 50%, 75% and 100% service 

availability 

 

As we may see, by using architectural freezing we obtain more 

deterministic results, regardless of the service unavailability 

probability. Additionally, it does not incur overhead costs in the 

mean execution time. Both results can be explained by the same 

effect: by avoiding the service provider to leave, we do not have 

to wait until it returns (or wait for a substitute), what makes the 

response time shorter and more homogeneous. 

6. RELATED WORKS 
Few works have been dedicated to provisioning real-time support 

in OSGi, and most of them deal with the isolation of components 

instead of the issues raised by the dynamism of the platform 

[5][12][23]. The first study concerning dynamics of real-time 

applications on the OSGi Platform was developed by [22]. It 

proposes an admission control protocol for applications over a 

real-time OSGi platform. We also address this issue through our 

SLA-based approach, preventing the installation of components 

which may compromise other components' determinism. 
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Figure 7. Mean execution time for a 0%, 25%, 50%, 75% and 

100% service availability. 

7. CONCLUSION AND PERSPECTIVES 
In this paper, we have focused on the conflict between the 

predictability required by real-time applications and the dynamism 

provided by dynamic software adaptation frameworks, such as the 

OSGi Service Platform. Our motivation to approach this conflict 

comes from the growing use of the OSGi Framework for 

developing applications and the popularization of Real-time Java 

technology. In order to deal with dynamism issues in real-time 

applications hosted in the OSGi Service Platform, we suggested 

the distinction between real-time processing periods, where no 

architecture modification is allowed (architectural freezing), and 

non real-time processing periods, where architecture 

modifications are allowed under the condition of respecting 

service level agreement established between service provider and 

service consumer components in the platform. An implementation 

of the architectural freezing approach was developed by means of 

iPOJO handlers. We chose iPOJO handlers as the base of our 

implementation in order to increase the portability of our solution 

and avoid modifications to the standardized OSGi platform and 

iPOJO core's corresponding source code. The prototype 

functioned as expected: when components entered the real-time 

state, the real-time manager component held all the dynamic 

component modifications, performing them once the execution of 

real-time code had terminated. Regarding future work, we intend 

to explore the issues raised by the cohabitation of real-time and 

non-real-time service providers and consumers in the same OSGi 

platform.  

The three open source implementations of the OSGi Service 

Platform (Apache Felix, Equinox and Knoplerfish) are already 

mature, as they date from around 10 years old. Our proposition is 

not to create a new whole specification (and consequently 

implementation), but to be compatible with the existent platforms 

with a minor impact on the developers' code. We see our proposed 

solutions and our prototype as a first step towards the 

development of a real-time OSGi platform and of extensions for 

OSGi's component model and other real-time service-oriented 

component models. 
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