
Managing the dynamism of the OSGi Service Platform in

Real-time Java Applications
João Claudio Américo

Université de Grenoble
BP 53, 38041 Grenoble, France

Joao.Americo@imag.fr

Walter Rudametkin
Université de Grenoble

BP 53, 38041 Grenoble, France

Walter.Rudametkin@imag.fr

Didier Donsez
Université de Grenoble

BP 53, 38041 Grenoble, France

Didier.Donsez@imag.fr

ABSTRACT

Real-time features and software runtime adaptation are two

requirements of modern software. On the one hand, the most

important characteristics in real-time applications are their

predictable behavior and deterministic execution time. On the

other hand, runtime adaptive software are capable of being

updated and reconfigured at execution time, making them more

flexible and available. The OSGi Service Platform has become the

de facto platform for developing flexible and modular software,

due to its simple service-oriented component model. Many Java

applications are being migrated to and developed for the OSGi

Platform's component model. However, due to the popularization

of real-time solutions such as the Real-Time Specification for

Java, some of these applications may have timing constraints

which cannot be respected because of the platform's dynamic

behavior and the fact that service-oriented component-based

application architectures may change at execution time. This

paper proposes to delay reconfigurations for after critical

processing, according to Service Level Agreements established

between service providers and consumers. Our approach has been

implemented as an extension to the iPOJO component model

which freezes application's architecture and avoids introducing

unpredictability caused by runtime adaptation during real-time

applications' execution.

Categories and Subject Descriptors

D.4.7 [Organization and Design]: Real-time Systems and

Embedded Systems; C.1.3 [Other Architecture Styles]:

Adaptable Architectures.

General Terms

Design, Measurement.

Keywords

Real-time; Service-Oriented Architectures; Real-time

Specification for Java (RTSJ); OSGi Platform; Dynamic Software

Adaptation; Mode Change.

1. INTRODUCTION
Dynamic adaptive behavior and real-time requirements are

common needs of today's software. While the former primes for

flexibility and unforeseen modifications in the environment at

runtime, the latter concerns predictability and determinism of

applications' response times. Many solutions for dealing with both

aspects separately have been fairly recently developed for the Java

platform. One of the most adopted real-time solutions for Java is

the Real-Time Specification for Java (RTSJ) [1] and its

implementations. At the same time, the popularization of

component-based design and service-oriented computing concepts

[20] for the development of flexible and modular applications in

Java are responsible for the specification of service platforms.

One of the most popular service platforms is the OSGi Service

Platform [27]. Its original intention was to become an open

specification to develop and deploy services in home gateways,

but it has become the de facto standard for developing general-

purpose Java applications in a modular and flexible way. Its

popularization in several domains is due to, among many other

things, its adoption by the Eclipse Foundation for developing

plug-ins for their IDE. The development paradigm of the OSGi

framework is both service-oriented and component-based. This

specification, that in former days addressed embedded systems,

was extended to cover many other domains, such as mobile

phones, industrial supervision, automobiles and more recently a

whole set of Java Enterprise Edition application servers.

In general, runtime adaptive software and real-time software are

disjoint sets due to the conflict between predictability and

flexibility. However, two factors motivate us to find solutions to

the growing number of systems which may be in the intersection

of both application classes: First, the fact that even critical real-

time software, which cannot have its execution interrupted, must

be updated due to environment changes or maintenance; and

secondly, the increasing popularity of service-oriented and

component-based approaches to achieve runtime adaptation,

which is leading industries and developers to migrate their

applications to service and component frameworks. An example is

the inclusion of the OSGi framework in the core of several

application servers, such as JOnAS [8] and Oracle's (formerly

BEA's) WebLogic Real-Time.

In this paper we identify the issues raised by the dynamic

modification of service-oriented architectures in Real-time Java

applications and suggest approaches to avoid the introduction of

unpredictability in real-time software hosted on the OSGi

Platform. We propose two approaches to tackle those issues:

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SAC’12, March 26-30, 2012, Riva del Garda, Italy.

Copyright 2012 ACM 978-1-4503-0857-1/12/03…$10.00.

1115

1. an architecture freezing strategy, which blocks the

application's architecture during real-time execution

periods and delay reconfigurations after them;

2. and an SLA-based monitoring system that controls the

reconfigurations performed at non-critical execution

periods.

We have implemented and validated one of our propositions on

Apache Felix, an open source OSGi platform.

This paper is organized as follows. Section 2 presents an overview

of Real-time for Java. Section 3 discusses about OSGi and real-

time applications. The architectural freezing approach and a real-

time extension for an SLA model are presented in the Sections 4.

Section 5 presents an implementation for the approach and the

experimentation performed to validate it. Finally, Section 6

concludes the paper and presents our perspectives.

2. REAL-TIME JAVA
Real-time systems differ from other information systems in the

fact that their correctness depends on both functional and

temporal aspects [25]. Timing correctness requirements come

from the impact of a real-time system upon the real world. These

requirements, in turn, may be expressed in the form of timing

constraints for the set of cooperating tasks which compose the

system [14]. Those timing constraints, also known as deadlines,

can be relative to an event or absolute, precising a point in time

for a task to complete its execution. Real-time systems do not

necessarily have to be fast, but they must present two properties:

they must be predictable, that is, it is possible to mathematically

demonstrate, at design time, that all timing constraints will be

met; and they must be deterministic, which means that the system

has the ability of ensuring the execution of an application despite

external factors that can introduce unpredictability. Schedulability

analysis and formal verification are two techniques commonly

used in order to verify the predictability of a system. The

determinism of an application can be measured through its latency

(time between an event and the system's response to that event)

and its jitter (distribution and standard deviation of latency

responses) [3].

In order to develop real-time applications, the entire underlying

infrastructure must be real-time. This motivated the creation of

real-time scheduling algorithms, operating systems and

programming languages. In the context of the Java platform, an

extension to standard API, as well as new rules for the Java

execution environment, were defined in order to allow the

development of real-time systems with the Java programming

language. This extension was developed under the name Real-

Time Specification for Java (RTSJ) in 2000, by members of

companies such as Sun and IBM. The two main areas identified as

requiring enhancements were:

 Thread Scheduling and Dispatching: RTSJ introduces

the concept of schedulable objects (real-time threads,

asynchronous event handlers and their subclasses),

objects which the base scheduler manages. The RTSJ's

base scheduler is priority-based, preemptive, with at

least 28 unique priorities with higher execution

eligibility than standard Java thread priorities, uses run-

to-block scheduling1, and can perform feasibility

analysis for a schedule. Schedulable objects have

parameter classes bound to them, representing resource-

demand (scheduling, memory or release) characteristics;

 Memory Management: RTSJ supports memory

management that avoids interfering with the

deterministic behavior of real-time code. It allows the

allocation of short and long-lived objects in memory

areas that are not garbage collected.

Besides these areas, RTSJ also propose enhancements in the

mechanisms for synchronization and sharing, asynchronous event

handling, asynchronous transfer of control, asynchronous thread

termination and physical memory access.

As we have seen in this section, real-time software requires

reliability and predictability. However, many current and future

real-time applications are dynamic, that is, external conditions

may require modifications and adaptations at runtime. In the next

sections, we discuss about dynamic software adaptation, the OSGi

service platform, which allows for dynamic reconfiguration, and

how real-time software may benefit from their approach.

3. MOTIVATIONS FOR A REAL-TIME

AWARE OSGI PLATFORM

3.1 Dynamic Adaptation of Real-Time Software
The first works about the importance of structuring software

systems were originally led by Dijkstra [9], in the late 1960s.

These were the basis for a software engineering discipline called

Software Architecture. Software architecture studies ways of

structuring software systems, by representing its software

components, their interconnections and the rules concerning their

design and evolution over time [11]. Structuring systems as

interacting components is the result of years of research in

software engineering and one of the solutions proposed in order to

deal with scalability, evolution and complexity issues in software.

Dynamic software architectures are architectures in which the

composition of interacting components changes during the

system's execution. Advances in this field have been boosted by

the emergence of ubiquitous computing [31] and the growing

demand for autonomic computing [16]. The main motivation for

runtime adaptive software is to avoid the risks, costs and

inconveniences presented by the downtime of software-intensive

systems because of environment changes [19]. An example is

dynamic software update, in which the application is able to

update itself to fix bugs and add new features without requiring a

stop and a restart. Nonstop and critical systems, such as air-traffic

control systems, enterprise and financial applications, which must

provide continuous service, are examples of applications in which

dynamic update is required [18]. However, this flexibility has a

cost: safety. Although we can perform modifications which were

not planned during the design phase, we cannot anticipate the

effects of a dynamic modification.

Several techniques have been developed to enable dynamic

adaptive behavior in applications:

 Component-Based Design: Software components are

independent software units, which are composed in

order to build a complete system, with contractually

1 It means that a schedulable object in execution will continue

running until it either finishes its execution or is preempted by a

higher-priority schedulable object.

1116

specified interfaces and explicit context dependencies.

Dynamic adaptation can be performed using late

binding mechanisms, which allows coupling

components at runtime through well-defined interfaces

[26]. The foundation of a component-based

methodology lies on its software component model,

which defines what components are, how they can be

constructed, assembled, deployed, etc.

 Architecture Description Languages: ADLs are

languages used to describe software architectures.

Common elements of ADLs are components,

connections and configurations. ADLs may be used to

specify points of variability in the architecture at

runtime. For instance, Fractal [2] is a component model

which contains an ADL. The architecture description of

an application can be queried by means of an X-Path-

based language called F-Path and reconfigurations can

be performed through a DSL called FScript [7].

 Dynamic Service-Oriented Architectures: Service-

Oriented Architecture (SOA) is an architectural style

and a programming model based on the service concept

[20]. A service is a software unit whose functionalities

and properties are declaratively described in a service

descriptor. Services can be composed and orchestrated

to create more complex services. Service providers

register the description of their services in a service

register. Service consumers query the service register to

discover and select services. Then, after negotiating and

agreeing to service usage terms, the service consumer is

bound to the service provider. Dynamic SOA [4] is an

extension to the SOA model, which considers that

services may appear, disappear or modify their contract

at runtime.

Real-time adaptive systems may be used to implement real-time

systems which need flexibility, adaptive systems whose

interactions with other software entities must meet real-time

requirements, or systems which present both characteristics.

Several works in the literature present approaches for dealing with

the dynamic reconfiguration of real-time applications. Among

these approaches, we find the use of mode change protocols [21].

An operating mode is characterized by a goal and a set of

functionalities, which in turn are provided by different sets of

tasks. Changes in the application state may request a mode

change, transitioning the system from one operating mode to

another. During the transition, the set of tasks may include both

old- and new- mode tasks. In this approach, it is crucial to assure

that the overload produced by the transition will not interfere on

the system's predictability and cause any deadline to be missed.

Other approaches for the development of real-time adaptive

systems include real-time extensions to object request brokers

[30][6] and the componentization of objects representing quality

of service attributes [24].

3.2 The OSGi Service Platform
The OSGi Service Platform is a service platform which addresses

the lack of support for modularity in Java applications [13] and

applies SOA principles to the design of Java applications. The

OSGi specification defines a way to create modules (bundles, in

OSGi terminology) and to make them interact at runtime. Bundles

are actually Jar files with meta-data specifying their symbolic

name, version and dependencies. The central idea of OSGi

modularization is that each bundle has its own class-loader, and

consequently, its own class path. In order to allow interactions

among bundles, OSGi uses a mechanism of explicit package

imports and exports. In addition, the OSGi platform allows

bundles to be dynamically installed, updated and uninstalled,

without requiring the platform to stop and restart. Besides the

deployment mechanisms, the specification defines a non-

distributed service platform for Java, which allows services to be

dynamically published and consumed in a single process or

memory space. OSGi services do not introduce overhead when

being invoked thanks to direct references. They are also known as

micro services (µServices) [17] or light-weight services in

opposition of well-known and heavy-weight Web Services.

The OSGi Service Platform has been a widely adopted technology

for home automation, pervasive environments and enterprise

contexts, due to its dynamic service component model, flexible

remote management and its continuous deployment support.

However, it lacks support for real-time applications, which

restricts its application to environments where real-time

requirements do not have to be guaranteed. Indeed, the

continuous deployment support allows bundles to be installed,

started, stopped and uninstalled at anytime, thus the static system

configuration assumption is no longer valid, because the system

will evolve during the application's life-cycle.

3.3 Challenges
When we consider the execution of real-time applications in the

OSGi Service Platform, several potential issues must be taken into

account. The most evident of them is that the OSGi Service

Platform was not conceived as a real-time application. So far, all

of its implementations were written in standard Java and its

classes will need to interact with real-time components, possibly

written in the RTSJ or another real-time Java technology.

Considering RTSJ specifically, this may lead to problems such as:

 Memory leaks: In the RTSJ, class objects and static

objects are stored automatically in the immortal memory

area, which is never garbage-collected. Consequently,

this may complicate uninstalling components and class

unloading.

 Starvation: The OSGi framework is based on standard

Java. Consequently, it uses ordinary Java threads. RTSJ

components have real-time priorities, which are higher

than the ordinary ones. Thus, due to the fact that RTSJ's

scheduler uses a run-to-block scheduling policy, real-

time component threads may lockout system threads and

keep the administrator from issuing commands to the

framework.

In this study we will focus mainly on ways to deal with real-time

constraints in the OSGi service platform, where dynamic

adaptability is a required property. An example of an application

with soft real-time requirements which requires dynamic

adaptations to its architecture is a digital security camera monitor

system (see Figure 1). In this application, the intrusion detection

system is connected to several security cameras which provide

either a still image frame or motion frame service, or both. The

number of security cameras connected to the intrusion detection

system is unknown at design time. At runtime, once a camera

component is installed, thanks to the system's Plug-and-Play

deployer, it is automatically connected to the intrusion detection

module, which will process frames in order to detect human

presence. Indeed, cameras in this system have the dynamic

1117

availability property, being able to appear and disappear at any

time, in order to facilitate installation and maintenance and

provide fault-tolerance to device and network failures. For

instance, if we assume that frames are sent regularly to the motion

detection module, image processing time must be bounded in

order to allow the system to react as soon as possible to a human

presence. Four points must be observed concerning the impact of

dynamic availability in the architecture of the real-time system:

 Binding to a new camera component: The system's

underlying mechanisms which perform the binding

between components may add an unpredictable delay in

the image processing time. Moreover, depending on the

number of cameras to which the intrusion detection

system is connected, processing time may become

longer than the time attributed to the execution of the

intrusion detection system.

 Removal of a camera component: In the same way as

binding mechanisms, unbinding mechanisms may

introduce an unpredictable delay in image processing

time. Furthermore, we must ensure that the removed

camera component is not currently being used by the

intrusion detection system.

 Update/reconfiguration of a camera component:

Updating a camera component in the OSGi platform

makes the component stop and return to the Installed

state. Component dependences are then resolved and

afterwards the component is restarted. The duration of

this process cannot be predicted. In addition, the new

camera component may have different properties.

Thereby, a feasibility analysis which may have been

performed before is no longer valid and therefore must

be redone.

 Binding a camera component to another component:

Another factor that must be considered is the case where

the camera component provides the image frame service

to more than one consumer. Sending the frame to one of

the components while the other waits may introduce an

unpredictable wait time for the former component.

Figure 1. Video monitoring application

To summarize, besides the real-time issues inherent to the Java

Platform, the OSGi Service Platform presents several other

shortcomings which make it inappropriate for deploying and

developing real-time applications. These shortcomings may have

two different reasons. The first one is the fact that the OSGi

platform was not conceived for being used in the context of real-

time applications. The other one comes from the dynamism

provided with its service-oriented component model. Indeed,

component dynamic availability features allow components to

appear and disappear unexpectedly at runtime. In this study, we

will focus on the dynamism aspect.

4. PROPOSITIONS
We propose an architecture freezing policy when the platform is

in a real-time processing state, holding all reconfigurations until

the end of execution of the critical code. Then, modifications may

be performed if they respect an agreement established between the

service consumer and the service provider.

4.1 Architectural Freezing
We consider that in a real-time application every component is

able to perform its tasks within the real-time requirements of the

application. Thus, the issues we are interested in lie in the

bindings between components and how they change over time.

Suppose that an application is represented by a set of states. Each

state corresponds to a given architecture of the application2, and

transitions between states correspond to the arrival, the departure

or the update of a component in the application during runtime. In

consequence, in order to respect the application timing

constraints, just as in a mode change protocol, we must define

rules for the transitions between states.

We have included a new mode to the OSGi Platform, called

"Real-time Mode". As shown in the Figure 2, contrarily to the

non-real-time mode, once the system enters the real-time mode,

no modifications are performed until it returns to the

corresponding non-real-time state, in order to ensure that real-

time requirements will be met. The mode change is explicitly

requested by the bundles before starting to execute a critical piece

of code. After the real-time processing, the bundle itself

communicates the platform that its critical code period has

finished. Many bundles may request the mode change at the same

time. Once the system has entered the real-time mode, it only

switches back to the non-real-time mode when no bundle is

executing critical code.

Figure 2. OSGi Platform state diagram with the inclusion of a

real-time mode.

2 By architecture we mean a set of bundles and the

interconnections among them. Consequently, a bundle update

leads the application to a new state, even if the system

configuration seems to be the same.

1118

Figure 3 shows the bundle life-cycle for bundles on both non-real-

time and real-time modes. Bundles cannot be started or stopped in

the real-time mode, so we removed the arrows which represent

this transition. Consequently, the life-cycle becomes a graph with

two separated components: Bundles which are resolved but not

started cannot be started during a real-time mode, which is

represented by the Installed, Resolved and Uninstalled states;

Active bundles cannot be stopped and remain in the Active state

during the real-time mode. We call this approach architecture

freezing, due to the fact that the system holds all the architecture

changes until the system quits the critical code period. This

solution addresses mainly systems whose majority of the code is

non-real-time but with some critical pieces of code which are

executed periodically.

Figure 3. Bundle life-cycle diagram for bundles in both

standard (on the left) and real-time (on the right) modes.

This approach is based on mode change, as we added a real-time

mode for the OSGi platform and defined rules for the transitions

to and from this mode. However, mode change protocols are

focused on tasks, while the OSGi platform handles bundles, which

may contain and execute multiple tasks simultaneously.

Nevertheless, avoiding components to be started, stopped or

updated during real-time processing is far from being enough. We

must ensure that the modifications that will be carried out at the

non-real-time mode will not affect the predictability of the real-

time components hosted by the platform. Therefore, we suggest in

the next section a SLA-based mechanism in which architecture

modifications may be performed if they respect an agreement

established between the service consumer and the service

provider.

4.2 Real-Time Dynamic Service Level Agreement
Service Level Agreement (SLA) [29] is a negotiated part of the

contract established between the service provider and the service

consumer which formally defines the level of service and the

penalties applied when commitments are not met by either party.

These commitments are specified in order to reach a given quality

of service. A SLA contains information such as the parts engaged

in the agreement, the service provided, service utilization time,

service availability, service reliability, service utilization price and

dates for renegotiating the agreement. SLAs are monitored by

Service Level Management (SLM) modules, which are also

responsible for applying the penalty policies in case of non

commitment of the agreement. In order to avoid equity issues, a

third party (the service certifier), chosen by the service provider

and consumer, takes measures periodically in order to verify that

the contract clauses are not violated.

In this work, we have extended the Dynamic SLA model proposed

by [28]. This DSLA model handles dynamic availability and

service disruption, by adding meta-data which will be used by the

monitor module for accepting new components and handling real-

time constraints. Our SLA model is depicted on the Figure 4 (for

the sake of clarity, model restrictions are not represented).

Figure 4. Our real-time SLA model.

The model contain two main entities: Component and Platform.

Components explicitly declare its required and provided services

in a meta-data file, alongside of a description of its timing

constraints (represented by the class RealTimeExecution), when

necessary. Provided and required services, and timing constraints

are considered as contracts, which must be monitored by a Real-

time Service Level Manager (SLM). Contracts are composed by

an interface and a list of resources, whose role depend on the type

of contract: for provided services and timing constraints, it means

the resources required by the service provider or real-time

component to execute; for service consumers, it acts as a filter,

that is, only services which use less or equal the given quantity of

resource can be selected. Service consumers also declare a policy,

which must be applied in case of contract violation.

A Platform is formed by a list of profiles, but only one profile at

a time can be active. In turn, a platform profile has a period time

(during which it must schedule all the executing components), a

list of resources available to the components it executes and a list

of policies to be applied in case of contract violation. The

resources declared by the components on its contracts must

obviously be a subset of the resources declared by the platform.

5. IMPLEMENTATION AND VALIDATION
We have implemented both approaches by means of an extension

to the iPOJO component model [10], which intercepts

modifications in the application's life-cycle. Components which

execute critical code are connected to a Real-time Manager,

whereby they can request a real-time mode change and notify the

platform when its real-time processing is over. Our iPOJO

1119

extension is also connected to this manager, and queries whether

the system is in a real-time mode or not before the execution of a

modification; in a positive case, the object which performed the

query is blocked. Once there is no component executing a critical

code, a notification is sent to the manager, that unblocks all the

blocked object. This notification module was developed by means

of RTSJ's asynchronous events and event handlers.

When the system is at non-real-time mode, our Real-time

Manager iPOJO extension performs several verifications

accordingly to the currently established SLAs, before allowing the

modification:

 In case of a component addition, it verifies whether this

component contains a real-time execution profile, with

timing constraints; if so, it will only start the component

if component's worst case execution time (WCET) plus

the sum of the WCET of its required services fits on the

active platform's period time and if all the required

resources can be reserved;

 In case of a component removal, it updates the

platform's current profile, by releasing the occupied

resources and updating the remaining period time;

additionally, it performs the same action for all

components which depends on the given component

and cannot be bound to any other service provider. For

those whose provider can be substituted, it updates the

platform's profile with the new data.

 In case of a component update, as the platform stops the

currently used component and starts the updated one,

the previously described actions are taken.

In order to evaluate the determinism of our solution, we adapted

the benchmark provided with Oracle/Sun's Java Real-time System

2.2 to the OSGi Platform and to the iPOJO component model, as

shown at Figure 5. Tests were performed on an architecture

composed by an Intel Core i5 2.4 GHz processor and a 4 GB

RAM memory, running the version 2.6.31 of the RT Linux Kernel

for Ubuntu 11.04. The benchmark consists of a client which

performs a given number of calls towards a class which performs

CPU-intensive work and measure the jitter and standard deviation

of the set of execution times3.

Figure 5. Benchmark application architecture.

3 We are currently working on a service-oriented adaptation of the

CDx benchmark [15], which is used to evaluate Real-time Java

virtual machines through a collision detection application.

The service provider, in turn, was modified to start and stop

stochastically according to a given probability. Figures 6 and 7

show the jitter and mean execution type respectively obtained for

different values of the probability parameter (in figure 7, the red

error bar represents the standard deviation for the mean of the

execution time with the real-time manager, as the blue error bar is

referent to the execution time without the manager). For this

benchmark, the client executes 1000 calls to the FibonacciService.

The Fibonacci Implementation calculates recursively the 40th term

of the Fibonacci series and returns its value. This way, we

simulate a service which unpredictably appears and disappears

(this may also be considered as an update), but whose availability

is controlled by means of software (e.g. we do not consider

services attached to physical devices which may be powered off

and disconnected from the network, as there is no way to avoid

this type of service disruption through software). For the moment,

we assume that components do not have a malicious behavior, and

will not block the whole platform in a real-time state. However,

this case can be easily covered by implementing a timeout

mechanism.

Figure 6. Jitter for a 0%, 25%, 50%, 75% and 100% service

availability

As we may see, by using architectural freezing we obtain more

deterministic results, regardless of the service unavailability

probability. Additionally, it does not incur overhead costs in the

mean execution time. Both results can be explained by the same

effect: by avoiding the service provider to leave, we do not have

to wait until it returns (or wait for a substitute), what makes the

response time shorter and more homogeneous.

6. RELATED WORKS
Few works have been dedicated to provisioning real-time support

in OSGi, and most of them deal with the isolation of components

instead of the issues raised by the dynamism of the platform

[5][12][23]. The first study concerning dynamics of real-time

applications on the OSGi Platform was developed by [22]. It

proposes an admission control protocol for applications over a

real-time OSGi platform. We also address this issue through our

SLA-based approach, preventing the installation of components

which may compromise other components' determinism.

1120

Figure 7. Mean execution time for a 0%, 25%, 50%, 75% and

100% service availability.

7. CONCLUSION AND PERSPECTIVES
In this paper, we have focused on the conflict between the

predictability required by real-time applications and the dynamism

provided by dynamic software adaptation frameworks, such as the

OSGi Service Platform. Our motivation to approach this conflict

comes from the growing use of the OSGi Framework for

developing applications and the popularization of Real-time Java

technology. In order to deal with dynamism issues in real-time

applications hosted in the OSGi Service Platform, we suggested

the distinction between real-time processing periods, where no

architecture modification is allowed (architectural freezing), and

non real-time processing periods, where architecture

modifications are allowed under the condition of respecting

service level agreement established between service provider and

service consumer components in the platform. An implementation

of the architectural freezing approach was developed by means of

iPOJO handlers. We chose iPOJO handlers as the base of our

implementation in order to increase the portability of our solution

and avoid modifications to the standardized OSGi platform and

iPOJO core's corresponding source code. The prototype

functioned as expected: when components entered the real-time

state, the real-time manager component held all the dynamic

component modifications, performing them once the execution of

real-time code had terminated. Regarding future work, we intend

to explore the issues raised by the cohabitation of real-time and

non-real-time service providers and consumers in the same OSGi

platform.

The three open source implementations of the OSGi Service

Platform (Apache Felix, Equinox and Knoplerfish) are already

mature, as they date from around 10 years old. Our proposition is

not to create a new whole specification (and consequently

implementation), but to be compatible with the existent platforms

with a minor impact on the developers' code. We see our proposed

solutions and our prototype as a first step towards the

development of a real-time OSGi platform and of extensions for

OSGi's component model and other real-time service-oriented

component models.

8. REFERENCES
[1] G. Bollella, K. Jeffay, and J. Gosling. The real-time

specification for java. IEEE Computer, 33:47-54, 2000.

[2] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B.

Stefani. The fractal component model and its support in java:

Experiences with auto-adaptive and reconfigurable systems.

Softw. Pract. Exper., 36:1257-1284, September 2006.

[3] E. J. Bruno and G. Bollella. Real-Time Java Programming:

With Java RTS. Prentice Hall PTR, Upper Saddle River, NJ,

USA, 1st edition, 2009.

[4] H. Cervantes and R. S. Hall. Autonomous adaptation to

dynamic availability using a service-oriented component

model. In Proceedings of the 26th International Conference

on Software Engineering, ICSE '04, pages 614-623,

Washington, DC, USA, 2004. IEEE Computer Society.

[5] G. Coates. Real-time OSGi.

www.osgi.org/wiki/uploads/VEG/Aonix-RT-OSGI.ppt,

2007.

[6] A. Corsaro. Cardamom: A next generation mission and safety

critical enterprise middleware. In Proceedings of the Third

IEEE Workshop on Software Technologies for Future

Embedded and Ubiquitous Systems, pages 73-74,

Washington, DC, USA, 2005. IEEE Computer Society.

[7] P.-C. David, T. Ledoux, M. Léger, and T. Coupaye. Fpath

and fscript: Language support for navigation and reliable

reconfiguration of fractal architectures. Annales des

Télécommunications, 64(1-2):45-63, 2009.

[8] M. Desertot, D. Donsez, and P. Lalanda. A dynamic service-

oriented implementation for java ee servers. In Proceedings

of the IEEE International Conference on Services

Computing, SCC '06, pages 159-166, Washington, DC,

USA, 2006. IEEE Computer Society.

[9] E. W. Dijkstra. The structure of the "the"-multiprogramming

system. Commun. ACM, 11:341-346, May 1968.

[10] C. Escoffier, R. Hall, and P. Lalanda. ipojo: an extensible

service-oriented component framework. In Proceedings of

the 2007 IEEE International Conference on Service

Computing, pages 474-481, july 2007.

[11] D. Garlan and M. Shaw. An introduction to software

architecture. In Advances in Software Engineering and

Knowledge Engineering, pages 1-39. Publishing Company,

1993.

[12] N. Gui, V. De Flori, H. Sun, and C. Blondia. A framework

for adaptive real-time applications: the declarative real-time

osgi component model. In Proceedings of the 7th workshop

on Reactive and adaptive middleware, ARM '08, pages 35-

40, New York, NY, USA, 2008. ACM.

[13] R. Hall, K. Pauls, S. McCulloch, and D. Savage. Osgi in

Action: Creating Modular Applications in Java. Manning

Pubs Co Series. Manning Publications, 2010.

[14] D. Isovic and G. Fohler. Efficient scheduling of sporadic,

aperiodic, and periodic tasks with complex constraints. In

Proceedings of the 21st IEEE conference on Real-time

systems symposium, RTSS'10, pages 207-216, Washington,

DC, USA, 2000. IEEE Computer Society.

[15] T. Kalibera, J. Hagelberg, P. Maj, F. Pizlo, B. Titzer, and J.

Vitek. A family of real-time java benchmarks. Concurrency

and Computation: Practice and Experience, 23(14):1679-

1700, 2011.

1121

[16] J. O. Kephart and D. M. Chess. The vision of autonomic

computing. Computer, 36:41-50, January 2003.

[17] P. Kriens. µservices.

http://www.osgi.org/blog/2010/03/services.html, Mar. 2010.

[18] J. Magee and J. Kramer. Dynamic structure in software

architectures. SIGSOFT Softw. Eng. Notes, 21:3-14, October

1996.

[19] P. Oreizy, N. Medvidovic, and R. N. Taylor. Runtime

software adaptation: framework, approaches, and styles. In

Companion of the 30th international conference on Software

engineering, ICSE Companion '08, pages 899-910, New

York, NY, USA, 2008. ACM.

[20] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann.

Service-oriented computing. Communications of the ACM,

46:25-28, 2003.

[21] J. Real and A. Crespo. Mode change protocols for real-time

systems: A survey and a new proposal. Real-Time Syst.,

26:161-197, March 2004.

[22] T. Richardson and A. Wellings. An admission control

protocol for real-time osgi. In Proceedings of the IEEE

International Symposium on Object-Oriented Real-Time

Distributed Computing, 217-224, 2010.

[23] T. Richardson, A. J. Wellings, J. A. Dianes, and M. Díaz.

Providing temporal isolation in the osgi framework. In

Proceedings of the 7th International Workshop on Java

Technologies for Real-Time and Embedded Systems, JTRES

'09, pages 1-10, New York, NY, USA, 2009. ACM.

[24] P. K. Sharma, J. P. Loyall, G. T. Heineman, R. E. Schantz,

R. Shapiro, and G. Duzan. Component-based dynamic qos

adaptations in distributed real-time and embedded systems.

In Proceedings of the International Symposyum on

Distributed Objects and Applications (DOA), volume 3291

of Lecture Notes in Computer Science, pages 1208-1224.

Springer, 2004.

[25] J. A. Stankovic. Misconceptions about real-time computing:

A serious problem for next-generation systems. Computer,

21:10-19, October 1988.

[26] C. Szyperski. Component Software: Beyond Object-Oriented

Programming. Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, USA, 2nd edition, 2002.

[27] The OSGi Alliance. OSGi service platform core

specification, release 4.3. http://www.osgi.org/Specifications,

2011.

[28] L. Touseau, D. Donsez, and W. Rudametkin. Towards a sla-

based approach to handle service disruptions. In Proceedings

of the 2008 IEEE International Conference on Services

Computing - Volume 1, pages 415-422, Washington, DC,

USA, 2008. IEEE Computer Society.

[29] D. Verma. Supporting Service Level Agreements on IP

Networks. Macmillan Technical Publishing, 1999.

[30] N. Wang and C. Gill. Improving real-time system

configuration via a qos-aware corba component model. In

Hawaii International Conference on System Sciences,

Software Technology Track, Distributed Object and

Component-based Software Systems Minitrack. HICSS,

2003.

[31] M. Weiser. Ubiquitous computing. Computer, 26:71-72,

1993.

1122

