

Les requêtes de consultation

Représente la majorité des requêtes

Encapsule complètement l'algèbre relationnel

Une seule commande!

2

Syntaxe partielle commande Select

SELECT [ALL | DISTINCT [ON (expression [, ...])]

* | expression [AS output name] [, ...

[FROM from_item [, ...]]

[WHERE condition]

[GROUP BY expression [, ...]]

[HAVING condition [, ...]]

[{ UNION | INTERSECT | EXCEPT [ALL] } select]

[ORDER BY expression [ASC | DESC | USING

operator] [, ...]]

[FOR UPDATE [OF tablename [, ...]]]

[LIMIT { count | ALL } [{ OFFSET | , } start]]

3

Ex. bibliothèque – état de la base auteur num_a nom 1 Albert Uderzo 2 Victor Hugo 3 J.K. Rowling livre num_l titre auteur 1 Le fils d'Asterix 1

Les misérables 2

3 Notre dame de Paris 2

Harry Potter à l'école des sorciers 3

Harry Potter et la chambre des secrets 3

num_e	nom	ville
1	Albert-René	Bruxelles
2	Gallimard	Paris
3	Folio	Paris

Ex. bibliothèque – état de la base

edite_par	num_1	num_e	date_edition
	1	1	1998-03-24
	2	3	1940-02-02
	3	2	1967-06-12
	4	2	1999-03-01
	5	2	2000-02-01

e'e	num_l	num_u
	1	2
	4	2

reserv

utilisateur

 num_u
 nom
 prenom

 1
 Caron
 Olivier

 2
 Janot
 Stéphane

 3
 Seynhaeve
 Franck

 4
 Duthilleul
 Jean-Michel

Consultation simple d'une table

Syntaxe:

editeur

- select col1, col2, ..., coln from nomTable
- Variante usuelle : select * from nomTable

Exemple:

select * from utilisateur ;

num_u	nom	prenom
1	Caron	Olivier
2	Janot	Stephane
3	Seynhaeve	Franck
4	Duthilleul	Jean-michel

Expression d'une projection

 $\begin{array}{l} \textbf{D\'efinition}: \text{la projection d'une relation R de sch\'ema R(A1,A2,...,An) sur les attributs Ai1,Ai2,...,Aip) (p < n) est une relation R0(Ai1,Ai2,...,Aip) dont les tuples sont obtenus par élimination des valeurs des attributs de R n'appartenant pas à R0.$

Syntaxe:

select coli1, coli2, ..., colip from table_name

Exemple:

select nom, prenom from utilisateur ;

nom	prenom
Caron	Olivier
Janot	Stephane
Seynhaeve	Franck
Duthilleul	Jean-michel

On peut inverser l'ordre de présentation (aucun impact sur le calcul)
La clause **distinct** (permet de supprimer les doublons)

Restriction

Définition: la restriction (ou sélection) de la relation R par une qualification Q est une relation R0 de même schéma dont les tuples sont ceux de R satisfaisant la qualification Q.

La qualification peut être exprimée à l'aide de constantes, comparateurs arithmétiques, opérateurs logiques

Prédicat:

- La qualification est de la forme <attribut>
 copérateur> <valeur> avec opérateur ∈ { =,≠, <, ≤, >, ≥ }
- Il est possible de composer plusieurs conditions de base à l'aide des opérateurs booléens de disjonction (OR), conjonction (AND), négation (NOT).

Expression d'une restriction

Introduction clause WHERE

Utilisation des opérateurs booléens : and, or, not

Comparaison de chaînes, dates, d'entiers, ...

Exemple:

select * from livre where auteur=2;

num_l	titre	auteur
2	Les misérables	2
3	Notre dame de Paris	2

Traitement de chaînes (1/3)

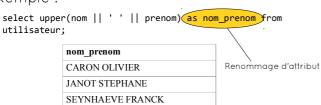
Opérateur LIKE

- Caractère spéciaux : '%' (remplace de 0 à plusieurs caractères) et '?' (remplace exactement un caractère).

Exemple:

select distinct titre from livre where titre like
'H%';

titre	
Harry Potter à l'école des sorciers	
Harry Potter et la chambre des secrets	


...

Traitement de chaînes (2/3)

Opérateur de comparaison =, <>, >,<, >=, <=,... (ordre lexicographique) (aussi applicable à tout type INTEGER, DATE...)

Opérateur de concaténation ||, fonctions prédéfinies (ex : upper, lower)

Exemple:

DUTHILLEUL JEAN-MICHEL

Traitement de chaînes (3/3)

Comparaison de chaînes : clause **BETWEEN**

permet de vérifier si la valeur d'un attribut est comprise <u>entre</u> deux constantes

Exemple:

select nom from utilisateur where nom between 'A%' and 'F%' ;

Note: l'exemple suivant est identique:

select nom from utilisateur where nom >= 'A%' and nom <= 'F%';
Applicable à tout type (integer, chaîne, date, . . .)

12

Présentation des données (1/2)

- Ordre d'affichage des colonnes
- Clause distinct, évite les doublons
- Ordre d'affichage des lignes, clause Order By
- Ordre des lignes multi-critères
- Aucun impact sur le traitement algébrique des requêtes

Présentation des données (2/2)

Syntaxe:

ORDER BY expression [ASC | DESC | USING [operator] [, ...]

Exemple:

select * from livre order by auteur DESC, titre ASC;

num_l	titre	auteur
4	Harry Potter à l'école des sorciers	3
5	Harry Potter et la chambre des secrets	3
2	Les misérables	2
3	Notre dame de Paris	2
1	Le fils d'Asterix	1

Opérations de calcul

Opérateurs arithmétiques : +,-, . . .

select now()-date_edition as duree, num_l from edite_par ;

duree	num_l
1423 days 17:30:01	1
22658 days 16:30:01	2
12666 days 17:30:01	3
1081 days 17:30:01	4
744 days 17:30:01	5

Expressions arithmétiques applicables dans la clause where

Fonctions de calcul

Une fonction de calcul est une fonction qui s'applique sur un ensemble de tuples et qui renvoie une valeur unique

Syntaxe:

nomFonction(nomColonne) ou nomFonction(*)

Résultat est stocké dans une colonne correspondant au nom de la fonction.

Toujours une ligne résultat.

Fonctions standards:

count, min, max, avg, sum

Fonctions de calcul - exemples

Exemple avec renommage:

Exemple sans renommage:

min	max	avg	sum
1	5	3.000	15

Calcul sur des groupes de lignes (1/3)

- Sélectionner des lignes pour appliquer un calcul
- Introduction clause **Group By**
- permet de partitionner la relation en sous-relations ayant les mêmes valeurs sur les attributs précisés : on peut alors appliquer des fonctions à chaque sousrelation.

select		auteur	titre	num_l	1
from livre		a	x	2	
group by auteur ;	sous-relation ≒	a	y	1	
	- 1	b	x	2	
Note : On trouve dans le	sous-relation 🗅	b	t	5	
résultat une ligne par		b	u	3	
sous-relation.	sous-relation 🖒	С	у	4	
				10	'

Calcul sur des groupes de lignes (2/3)

Exemple:

select auteur, count(*) as nbre_par_auteur from
livre group by auteur;

auteur	nbre_par_auteur	
1	1	
2	2	
3	2	

Note: Toutes les colonnes figurant dans un **group by** doivent apparaître dans la clause select.

19

Calcul sur des groupes de lignes (3/3)

- Imposer une condition aux groupes formés par la clause Group By
- Introduction clause HAVING
- Poser une condition portant sur chacune des sous-relations générées par le GROUP BY. Les sous-relations ne vérifiant pas la condition sont écartées du résultat.

Exemple:

select auteur, count(*) as $nbre_par_auteur$ from livre group by auteur having count(*)>1;

auteur	nbre_par_auteur
2	2
3	2

Note: Ne pas confondre avec la clause where

Produit cartésien

Définition : Le produit cartésien de deux relations R et S est une relation T ayant pour schéma la concaténation de celui de R avec celui de S et pour tuples **toutes les combinaisons des tuples** de R et S.

Opérateur commutatif

 $R \times S = S \times R$

Opérateur intermédiaire (pas de sens en soi)

21

Expression d'un produit cartésien

Utilisation clause FROM

Déclaration de variables (ou utiliser le nom de la table)

Exemples:

select * from utilisateur, livre; ...(20 lignes)

select distinct e.nom as nomEditeur , a.nom as
NomAuteur from editeur e, auteur a;

__

Jointure

Définition : La jointure de deux relations R et S selon une qualification multi-attributs Q est l'ensemble des tuples du produit cartésien R×S satisfaisant la qualification Q

Opérateur commutatif

R ><_{prédicat} S = S ><_{prédicat} R

Prédicat :

<attribut1> <opérateur> <attribut2> où attribut1 \in R et attribut2 E ovec opérateur \in {=,\$\varphi\$,\$\leq\$\leq\$.}\rangle\$}

Il est possible de composer plusieurs conditions de base à l'aide des opérateurs booléens de disjonction (OR), conjonction (AND), négation (NOT).

Expression d'une jointure

Relier avec cohérence plusieurs tables.

Relier les clés étrangères avec les clés primaires correspondantes

Exemple:

Expression du produit cartésien

select titre, nom from auteur, livre where auteur.num_a=livre.auteur;

Prédicat de jointure

titre	nom
Le fils d'Asterix	Albert Uderzo
Les misérables	Victor Hugo
Notre dame de Paris	Victor Hugo
Harry Potter à l'école des sorciers	J.K. Rowling
Harry Potter et la chambre des secrets	J.K. Rowling

Les jointures à la SQL/2

- Nouvelles possibilités d'expression de jointures
- Non encore implémenté par tous les SGBD (ex. Oracle)
- Les expressions de jointures sont exprimés dans la clause from
- Distinction de jointures : inner join (défaut), left outer join, right outer join, full outer join
- Pour les exemples suivants :

```
insert into livre values (6, 'Le livre inconnu',
null);
insert into auteur values (4, 'Paltoquet');
```

Jointure SQL/2 classique

select titre, nom
from livre
inner join auteur
on livre.auteur=auteur.num_a;

titre	nom
Le fils d'Asterix	Albert Uderzo
Les misérables	Victor Hugo
Notre dame de Paris	Victor Hugo
Harry Potter à l'école des sorciers	J.K. Rowling
Harry Potter et la chambre des secrets	J.K. Rowling

27

Jointure externe gauche

select titre, nom
from livre
left outer join auteur
on livre.auteur=auteur.num_a;

titre	nom	
Le fils d'Asterix	Albert Uderzo	
Les misérables	Victor Hugo	
Notre dame de Paris	Victor Hugo	
Harry Potter à l'école des sorciers	J.K. Rowling	
Harry Potter et la chambre des secrets	J.K. Rowling	
le livre inconnu		

Jointure externe droite

select titre, nom
from livre
right outer join auteur
on livre.auteur=auteur.num_a;

titre	nom
Le fils d'Asterix	Albert Uderzo
Les misérables	Victor Hugo
Notre dame de Paris	Victor Hugo
Harry Potter à l'école des sorciers	J.K. Rowling
Harry Potter et la chambre des secrets	J.K. Rowling
	Paltoquet

Jointure externe complète

select titre, nom
from livre
full outer join auteur
on livre.auteur=auteur.num_a;

titre	nom
Le fils d'Asterix	Albert Uderzo
Les misérables	Victor Hugo
Notre dame de Paris	Victor Hugo
Harry Potter à l'école des sorciers	J.K. Rowling
Harry Potter et la chambre des secrets	J.K. Rowling
le livre inconnu	
	Paltoquet

Remarques: syntaxe des jointures

INNER et OUTER sont toujours facultatifs

LEFT, RIGHT et FULL impliquent une jointure externe

Les syntaxes :

- T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } join T2 on boolean_expression
- T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } join T2 using liste_nom_colonne
 - USING a équivalent à on t1.a = t2.a
 - USING (a,b) équivalent àon t1.a=t2.a and t1.b=t2.b
- T1 NATURAL { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } join T2

NATURAL effectue une comparaison de toutes les colonnes de même nom dans les deux tables.

Expression d'une union

Définition: l'union de 2 relations R et S de même schéma est une relation T de même schéma contenant l'ensemble des tuples appartenant à R ou S

- < requête > UNION < requête >
- < requête > UNION ALL < requête >

Le résultats des deux requêtes doivent avoir la même structure

- même nombre de colonnes, mêmes types de données, même ordre.

nom Albert-René Albert Uderzo Folio Gallimard J.K. Rowling Victor Hugo

Exemple:

select nom from auteur union select nom from editeur ;

Expression d'une intersection

Définition : L'intersection de deux relations R et S de même schéma est une relation T de même schéma contenant les tuples appartenant à la fois à R et S

Syntaxe:

< requête > INTERSECT < requête >

nom

Exemple:

- select nom from auteur intersect select nom from editeur :
- est équivalent à :

select nom from auteur a where a.nom IN select nom from editeur ; select nom from auteur a where EXISTS select nom from editeur e where a.nom =

- Le résultats des deux requêtes doivent avoir la même structure
- Note : Attention à la structure du IN et du EXISTS

Expression d'une différence

Définition : la différence de 2 relations R et S de même schéma est une relation T de même schéma contenant l'ensemble des tuples appartenant à R et n'appartenant pas à S

Suntaxe:

< requête > EXCEPT < requête >

Exemple:

select nom from auteur except select nom from editeur; Albert Uderzo J.K. Rowling

nom

Victor Hugo

- est équivalent à :

select nom from auteur a where a.nom NOT IN select nom from editeur select nom from auteur a where NOT EXISTS select nom from editeur e where a.nom

Note : Attention à la structure du NOT IN et du NOT EXISTS